@article{VMUMM_2018_5_a8,
author = {A. A. Astrelina},
title = {Baire class of topological entropy of nonautonomous dynamical systems},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {64--67},
year = {2018},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a8/}
}
A. A. Astrelina. Baire class of topological entropy of nonautonomous dynamical systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 64-67. http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a8/
[1] Vetokhin A.N., “Tipichnoe svoistvo topologicheskoi entropii nepreryvnykh otobrazhenii kompaktov”, Differents. uravneniya, 53:4 (2017), 448–453 | DOI | MR | Zbl
[2] Kolyada S., Snoha L., “Topological entropy of nonautonomous dynamical systems”, Random and Comput. Dynamics, 1996, no. 4, 205–233 | MR | Zbl
[3] Katok A.B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[4] Khausdorf F., Teoriya mnozhestv, ONTI, M., 1937
[5] Arinsh E.G., “Ob odnom obobschenii teoremy Bera”, Uspekhi matem. nauk, 8:3(55) (1953), 105–108 | MR
[6] Karpuk M.V., “Stroenie mnozhestv tochek polunepreryvnosti pokazatelei Lyapunova lineinykh differentsialnykh sistem, nepreryvno zavisyaschikh ot parametra”, Differents. uravneniya, 51:10 (2015), 1404–1408 | DOI | MR | Zbl