Baire class of topological entropy of nonautonomous dynamical systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 64-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the lower topological entropy considered as a function on the space of sequences of continuous self-maps of a metric compact space belongs to the second Baire class, and the upper one belongs to the fourth Baire class.
@article{VMUMM_2018_5_a8,
     author = {A. A. Astrelina},
     title = {Baire class of topological entropy of nonautonomous dynamical systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {64--67},
     publisher = {mathdoc},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a8/}
}
TY  - JOUR
AU  - A. A. Astrelina
TI  - Baire class of topological entropy of nonautonomous dynamical systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 64
EP  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a8/
LA  - ru
ID  - VMUMM_2018_5_a8
ER  - 
%0 Journal Article
%A A. A. Astrelina
%T Baire class of topological entropy of nonautonomous dynamical systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 64-67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a8/
%G ru
%F VMUMM_2018_5_a8
A. A. Astrelina. Baire class of topological entropy of nonautonomous dynamical systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 64-67. http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a8/