Simplest singular points of $1$-forms invariant with respect to actions of a third-order group
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 60-63

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify singular points which cannot be excluded by deformations of $1$-forms invariant with respect to an action of a cyclic group of order $3$. It is proved that for $\mathbb{Z}_3$-invariant $1$-forms the equivariant index of a singular point as an element of the representation ring of the group coincides with the class of the representation on the space of germs of the highest order forms factorized by the subspace of forms divisible by the given $1$-form.
@article{VMUMM_2018_5_a7,
     author = {F. I. Mamedova},
     title = {Simplest singular points of $1$-forms invariant with respect to actions of a third-order group},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {60--63},
     publisher = {mathdoc},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a7/}
}
TY  - JOUR
AU  - F. I. Mamedova
TI  - Simplest singular points of $1$-forms invariant with respect to actions of a third-order group
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 60
EP  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a7/
LA  - ru
ID  - VMUMM_2018_5_a7
ER  - 
%0 Journal Article
%A F. I. Mamedova
%T Simplest singular points of $1$-forms invariant with respect to actions of a third-order group
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 60-63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a7/
%G ru
%F VMUMM_2018_5_a7
F. I. Mamedova. Simplest singular points of $1$-forms invariant with respect to actions of a third-order group. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 60-63. http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a7/