@article{VMUMM_2018_5_a5,
author = {G. L. Brovko},
title = {A generalized theory of tensor strain and stress measures in the classical continuum mechanics},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--57},
year = {2018},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a5/}
}
TY - JOUR AU - G. L. Brovko TI - A generalized theory of tensor strain and stress measures in the classical continuum mechanics JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 46 EP - 57 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a5/ LA - ru ID - VMUMM_2018_5_a5 ER -
G. L. Brovko. A generalized theory of tensor strain and stress measures in the classical continuum mechanics. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 46-57. http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a5/
[1] Ilyushin A.A., Mekhanika sploshnoi sredy, Izd-vo MGU, M., 1990
[2] Sedov L.I., Mekhanika sploshnoi sredy, v. 1, 2, Nauka, M., 1973
[3] Truesdell C., Noll W., Handbuch der Physik, v. III/3, The non-linear field theories of Mechanics, Springer Verlag, Berlin, 1965 ; 3d ed., Springer-Verlag, Berlin–Heidelberg–New York, 2004 | MR | Zbl
[4] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Mir, M., 1975
[5] Zhermen P., Mekhanika sploshnykh sred, Vysshaya shkola, M., 1983
[6] Jaric J., Mehanika Kontinuuma, IRO Gradevinska knjiga, Beograd, 1988
[7] Pobedrya B.E., Georgievskii D.V., Osnovy mekhaniki sploshnoi sredy. Kurs lektsii, Fizmatlit, M., 2006
[8] Gurtin M.E., Fried E., Anand L., The mechanics and thermodynamics of continua, Cambridge University Press, Cambridge–N. Y.–Melbourne–Madrid–Cape Town–Singapore–São Paolo–Delhi–Dubai–Tokyo, 2010 | MR
[9] Brovko G.L., Osnovy mekhaniki sploshnoi sredy (kratkii konspekt lektsii, zadachi, uprazhneniya), v. 1, Izd-vo Popechitelskogo soveta mekh.-mat. f-ta MGU, M., 2011; т. 2, 2013
[10] Eglit M.E., Lektsii po osnovam mekhaniki sploshnykh sred, Knizhnyi dom “Librokom”, M., 2013
[11] Astarita Dzh., Marruchchi Dzh., Osnovy gidromekhaniki nenyutonovskikh zhidkostei, Mir, M., 1978
[12] Tolokonnikov L.A., Mekhanika deformiruemogo tverdogo tela, Vysshaya shkola, M., 1979
[13] Lure A.I., Nelineinaya teoriya uprugosti, Nauka, M., 1980
[14] Pozdeev A.A., Trusov P.V., Nyashin Yu.I., Bolshie uprugoplasticheskie deformatsii, Nauka, M., 1986 | MR
[15] Levitas V.I., Bolshie uprugoplasticheskie deformatsii materialov pri vysokom davlenii, Naukova dumka, Kiev, 1987
[16] Kondaurov V.I., Nikitin L.V., Teoreticheskie osnovy reologii geomaterialov, Nauka, M., 1990
[17] Chernykh K.F., Nelineinaya uprugost (teoriya i prilozheniya), Solo, SPb., 2004
[18] Korneev S.A., Ponyatiya i osnovy lokalno-neravnovesnoi termodinamiki sploshnoi sredy, Izd-vo OmGTU, Omsk, 2009
[19] Markin A.A., Sokolova M.Yu., Termomekhanika uprugoplasticheskogo deformirovaniya, Fizmatlit, M., 2013
[20] Seth B.R., “Finite strain in elastic problems”, Phil. Trans. Roy. Soc. London. Ser. A, 234 (1935), 231–264 | DOI | Zbl
[21] Seth B.R., “Generalized strain measures with applications to physical problems”, Second Order Effects in Elasticity, Plasticity and Fluid Dynamics, eds. M. Reiner, D. Abir, Pergamon Press, Oxford, 1964, 162–172 | MR
[22] Setkh B.R., “Ponyatie mery deformatsii v tekhnike vysokoskorostnogo deformirovaniya”, Uspekhi mekhaniki deformiruemykh sred, Nauka, M., 1975, 528–531
[23] Hill R., “Aspects of invariance in solid mechanics”, Adv. Appl. Mech., 18 (1978), 1–75 | MR | Zbl
[24] Man C.S., Guo Z.H., “A basis-free formula for time rate of Hill's strain tensors”, Int. J. Solid and Struct., 30 (1993), 2819–2842 | DOI | MR | Zbl
[25] Hencky H., “The elastic behavior of vulcanized rubber”, J. Appl. Mech., 1 (1933), 45–53
[26] Scrzypek J., Wroblewski A., “Application of logarithmic strains to changing principal directions via progressing transformations”, J. Struct. Mech., 13:3–4 (1985), 283–299 | DOI
[27] Zhao Z., “Logarithmic strain and plastic constitutive equation at finite strain”, Proc. Int. Conf. Nonlin. Mech. (Shanghai, Oct. 28–31, 1985), Beijing, 1985, 651–656
[28] Trusov P.V., Obobschenie teorii uprugoplasticheskikh protsessov na sluchai bolshikh plasticheskikh deformatsii, Dokt. dis., M., 1986
[29] Xiao H., Bruhns O.T., Meyers A., “Large strain responses of elastic-perfect plasticity and kinematic hardening plasticity with the logarithmic rate: Swift effect in torsion”, Int. J. Plasticity, 17 (2001), 211–235 | DOI | Zbl
[30] Brovko G.L., “Nekotorye podkhody k postroeniyu opredelyayuschikh sootnoshenii plastichnosti pri bolshikh deformatsiyakh”, Uprugost i neuprugost, Izd-vo MGU, M., 1987, 68–81
[31] Markin A.A., Tolokonnikov L.A., “Mery i opredelyayuschie sootnosheniya konechnogo uprugoplasticheskogo deformirovaniya”, Prikladnye problemy prochnosti i plastichnosti, Gorkii, 1987, 32–37
[32] Markin A.A., Variant opredelyayuschikh sootnoshenii i postanovka granichnykh zadach pri konechnykh uprugoplasticheskikh deformatsiyakh, Dokt. dis., M., 1988
[33] Levitas V.I., Bolshie uprugoplasticheskie deformatsii materialov pri vysokom davlenii, Dokt. dis., M., 1988
[34] Novozhilov V.V., Chernykh K.F., “Ob “istinnykh” merakh napryazhenii i deformatsii v nelineinoi mekhanike deformiruemogo tela”, Izv. AN SSSR. Mekhan. tverdogo tela, 1987, no. 5, 73–80
[35] Brovko G.L., “Ponyatiya obraza protsessa i pyatimernoi izotropii svoistv materialov pri konechnykh deformatsiyakh”, Dokl. AN SSSR, 308:3 (1989), 565–570 | MR | Zbl
[36] Brovko G.L., “Materialnye i prostranstvennye predstavleniya opredelyayuschikh sootnoshenii deformiruemykh sred”, Prikl. matem. i mekhan., 54:5 (1990), 814–824 | MR | Zbl
[37] Brovko G.L., “Svoistva i integrirovanie nekotorykh proizvodnykh po vremeni ot tenzornykh protsessov v mekhanike sploshnoi sredy”, Izv. AN SSSR. Mekhan. tverdogo tela, 1990, no. 1, 54–60 | MR
[38] Brovko G.L., “Ob odnom semeistve golonomnykh tenzornykh mer deformatsii i napryazhenii”, Vestn. Mosk. un-ta. Matem. Mekhan., 1992, no. 4, 86–91 | MR | Zbl
[39] Brovko G.L., Razvitie matematicheskogo apparata i osnov obschei teorii opredelyayuschikh sootnoshenii mekhaniki sploshnoi sredy, Dokt. dis., M., 1996
[40] Brovko G.L., “Invariance types of tensors, tensor processes and their transforms in classical continuum mechanics”, Proc. Int. Seminar on Geometry, Continua Microstructure (Sinaia, Romania, September 26–28, 2001), Bucharest, 2002, 13–24 | Zbl
[41] Brovko G.L., “Osnovy obobschennoi teorii tenzornykh mer deformatsii i napryazhenii”, Problemy nelineinoi mekhaniki, K vosmidesyatiletiyu L. A. Tolokonnikova, TulGU, Tula, 2003, 123–132
[42] Brovko G.L., “Podkhody k postroeniyu ratsionalnoi mekhaniki klassicheskikh i neklassicheskikh sred”, X Vseros. s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki, Izbrannye tezisy dokladov (Nizhnii Novgorod, 24–30 avgusta 2011 g.), Izd-vo Nizhegorod. gos. un-ta im. N.I. Lobachevskogo, Nizhnii Novgorod, 2011, 27–28
[43] Brovko G.L., “Matematicheskie osnovy mekhaniki sploshnykh sred: klassicheskie i neklassicheskie teorii”, Uprugost i neuprugost, Izd-vo MGU, M., 2012, 20–43
[44] Brovko G.L., “On general principles of the theory of constitutive relations in classical continuum mechanics”, J. Eng. Math., 78 (2013), 37–53 | DOI | MR | Zbl
[45] Brovko G.L., “Razvitie obschikh printsipov teorii opredelyayuschikh sootnoshenii sploshnykh sred”, Izv. TulGU. Estestvennye nauki, 2013, no. 2–2, 43–58
[46] Brovko G.L., “Elementy nelineinoi mekhaniki sploshnoi sredy v sovremennoi teorii”, Izv. MGTU “MAMI”, 4:2(24) (2015), 34–43
[47] Brovko G.L., Elementy matematicheskogo apparata mekhaniki sploshnoi sredy, Fizmatlit, M., 2015
[48] Finoshkina A.S., “Ispolzovanie novykh ob'ektivnykh proizvodnykh v prosteishikh modelyakh gipouprugosti i plasticheskogo techeniya s kinematicheskim uprochneniem”, Izv. TulGU. Matematika. Mekhanika. Informatika, 6:2 (2000), 160–166
[49] Finoshkina A.S., “Usage of the new objective derivatives in models of plasticity at finite strains: the theory and numerical experiments”, V Int. Congr. Math. Modeling, Book of Abstracts, v. 1, JINR, Dubna, 2002, 35
[50] Finoshkina A.S., Modeli plastichnosti pri konechnykh deformatsiyakh, Kand. dis., M., 2003
[51] Brovko G.L., Ivanova O.A., Finoshkina A.S., “On geometrical and analytical aspects in formulations of problems of classic and non-classic continuum mechanics”, Operator Theory: Advances and Applications, 191, Birkhäuser Verlag, Basel/Switzerland, 2009, 51–79 | MR | Zbl
[52] Shutkin A.S., “Podkhody k obobscheniyu opredelyayuschikh sootnoshenii deformiruemykh tverdykh tel na oblast konechnykh deformatsii”, Mekhan. kompozitsionnykh materialov i konstruktsii, 16:2 (2010), 166–180
[53] Shutkin A.S., Modeli materialov s pamyatyu formy pri konechnykh deformatsiyakh, Kand. dis., M., 2011
[54] Muravlev A.V., “Obobschenie teorii uprugoplasticheskikh protsessov A.A. Ilyushina na sluchai konechnykh deformatsii”, Vestn. Nizhegorod. un-ta im. N.I. Lobachevskogo. Mekhan. deformiruemogo tverdogo tela, 2011, no. 4(4), 1642–1644
[55] Muravlev A.V., Devyatov A.S., “Razvitie teorii uprugoplasticheskikh protsessov A.A. Ilyushina i eksperimentalno-teoreticheskikh metodov issledovaniya vyazkoplasticheskikh svoistv materialov pri konechnykh deformatsiyakh”, Probl. mashinostr. i avtomatiz., 2016, no. 1, 84–90 | MR
[56] Martynova E.D., Stetsenko N.S., “Ispolzovanie odnoparametricheskogo semeistva ob'ektivnykh proizvodnykh Gordona–Shouoltera dlya opisaniya konechnykh deformatsii vyazkouprugikh tel”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 6, 64–68 | Zbl
[57] Ovchinnikova N.V., “O tenzornykh merakh napryazhenii i deformatsii, ispolzuemykh v ANSYS dlya resheniya uprugoplasticheskikh zadach pri konechnykh deformatsiyakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 5, 31–36
[58] Tunguskova Z.G., “Analiticheskoe predstavlenie tenzora napryazhenii v zadache o sdvige gipouprugogo tela s ispolzovaniem korotatsionnykh proizvodnykh opredelennogo vida”, Uprugost i neuprugost, Izd-vo MGU, M., 2016, 260–262
[59] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR