Optimal location of compact in spaces with Euclidean invariant Gromov--Hausdorff metrics
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 14-22

Voir la notice de l'article provenant de la source Math-Net.Ru

We study nonempty compact subsets of the Euclidean space disposed optimally (the Hausdorff distance between them cannot be reduced). We show that if one of them is a singleton, then it coincides with the Chebyshev center of the second one. We also consider many other particular cases. As an application, we show that each three-point metric space can be isometrically embedded into the orbits space of the group of proper motions acting on the compact subsets of the Euclidean space. In addition, we prove that for each couple of optimally located compacts, all compacts intermediate in the sense of Hausdorff metric are intermediate in the sense of Euclidean Gromov–Hausdorff metric too.
@article{VMUMM_2018_5_a2,
     author = {O. S. Malysheva},
     title = {Optimal location of compact in spaces with {Euclidean} invariant {Gromov--Hausdorff} metrics},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {14--22},
     publisher = {mathdoc},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a2/}
}
TY  - JOUR
AU  - O. S. Malysheva
TI  - Optimal location of compact in spaces with Euclidean invariant Gromov--Hausdorff metrics
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 14
EP  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a2/
LA  - ru
ID  - VMUMM_2018_5_a2
ER  - 
%0 Journal Article
%A O. S. Malysheva
%T Optimal location of compact in spaces with Euclidean invariant Gromov--Hausdorff metrics
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 14-22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a2/
%G ru
%F VMUMM_2018_5_a2
O. S. Malysheva. Optimal location of compact in spaces with Euclidean invariant Gromov--Hausdorff metrics. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 14-22. http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a2/