Optimal location of compact in spaces with Euclidean invariant Gromov–Hausdorff metrics
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 14-22
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study nonempty compact subsets of the Euclidean space disposed optimally (the Hausdorff distance between them cannot be reduced). We show that if one of them is a singleton, then it coincides with the Chebyshev center of the second one. We also consider many other particular cases. As an application, we show that each three-point metric space can be isometrically embedded into the orbits space of the group of proper motions acting on the compact subsets of the Euclidean space. In addition, we prove that for each couple of optimally located compacts, all compacts intermediate in the sense of Hausdorff metric are intermediate in the sense of Euclidean Gromov–Hausdorff metric too.
@article{VMUMM_2018_5_a2,
     author = {O. S. Malysheva},
     title = {Optimal location of compact in spaces with {Euclidean} invariant {Gromov{\textendash}Hausdorff} metrics},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {14--22},
     year = {2018},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a2/}
}
TY  - JOUR
AU  - O. S. Malysheva
TI  - Optimal location of compact in spaces with Euclidean invariant Gromov–Hausdorff metrics
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 14
EP  - 22
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a2/
LA  - ru
ID  - VMUMM_2018_5_a2
ER  - 
%0 Journal Article
%A O. S. Malysheva
%T Optimal location of compact in spaces with Euclidean invariant Gromov–Hausdorff metrics
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 14-22
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a2/
%G ru
%F VMUMM_2018_5_a2
O. S. Malysheva. Optimal location of compact in spaces with Euclidean invariant Gromov–Hausdorff metrics. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 14-22. http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a2/

[1] Edwards D., The Structure of Superspace, Studies in Topology, Academic Press, N.Y.–S.F.–L., 1975 | MR

[2] Gromov M., “Groups of polynomial growth and expanding maps”, Publ. math., 53 (1981), 53–73 | DOI | MR

[3] Memoli F., “Gromov–Hausdorff distances in Euclidean spaces”, Computer Vision and Pattern Recognition Workshops 2008. IEEE Computer Society Conference (Anchorage, 2008), 1–8 | MR

[4] Lund K., Schlicker S., Sigmon P., “Fibonacci sequences and the space of compact sets”, Involve, 1:2 (2008), 197–215 | DOI | MR | Zbl

[5] Kazakov A.L., Lebedev P.D., “Postroenie nailuchshikh krugovykh approksimatsii mnozhestv na ploskosti i na sfere”, XII Vseros. soveschanie po problemam upravleniya VSPU-2014 (Moskva, 2014), 1575–1586

[6] Sosov E.N., Geometrii vypuklykh i konechnykh mnozhestv geodezicheskogo prostranstva, Kazan. feder. un-t, Kazan, 2010

[7] Burago D.Yu., Burago Yu.D., Ivanov S.V., Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004 | MR

[8] Garkavi A.L., “O chebyshëvskom tsentre i vypukloi obolochke mnozhestva”, Uspekhi matem. nauk, 19:6 (1964), 139–145 | MR | Zbl

[9] Iliadis S., Ivanov A., Tuzhilin A., “Local structure of Gromov–Hausdorff space, and isometric embeddings of finite metric spaces into this space”, Topol. and its Appl., 221, Elsevier BV, Netherlands, 2017, 393–398 | DOI | MR