The paranormality of products and their subsets
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 54-56

Voir la notice de l'article provenant de la source Math-Net.Ru

A topological space is called paranormal if any countable discrete system of closed sets $\{D_n{:}n=1,2,3,\ldots\}$ can be expanded to a locally finite system of open sets $\{U_n{:}n=1,2,3,\ldots\}$, i.e., $D_n$ is contained in $U_n$ for all $n$ and $D_m\cap U_n\neq\emptyset$ if and only if $D_m=D_n$. It is proved that if $X$ is a countably compact space whose cube is hereditarily paranormal, then $X$ is a metrizable space.
@article{VMUMM_2018_4_a8,
     author = {A. V. Bogomolov},
     title = {The paranormality of products and their subsets},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--56},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a8/}
}
TY  - JOUR
AU  - A. V. Bogomolov
TI  - The paranormality of products and their subsets
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 54
EP  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a8/
LA  - ru
ID  - VMUMM_2018_4_a8
ER  - 
%0 Journal Article
%A A. V. Bogomolov
%T The paranormality of products and their subsets
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 54-56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a8/
%G ru
%F VMUMM_2018_4_a8
A. V. Bogomolov. The paranormality of products and their subsets. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 54-56. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a8/