The paranormality of products and their subsets
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 54-56
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A topological space is called paranormal if any countable discrete system of closed sets $\{D_n{:}n=1,2,3,\ldots\}$ can be expanded to a locally finite system of open sets $\{U_n{:}n=1,2,3,\ldots\}$, i.e., $D_n$ is contained in $U_n$ for all $n$ and $D_m\cap U_n\neq\emptyset$ if and only if $D_m=D_n$. It is proved that if $X$ is a countably compact space whose cube is hereditarily paranormal, then $X$ is a metrizable space.
@article{VMUMM_2018_4_a8,
     author = {A. V. Bogomolov},
     title = {The paranormality of products and their subsets},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--56},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a8/}
}
TY  - JOUR
AU  - A. V. Bogomolov
TI  - The paranormality of products and their subsets
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 54
EP  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a8/
LA  - ru
ID  - VMUMM_2018_4_a8
ER  - 
%0 Journal Article
%A A. V. Bogomolov
%T The paranormality of products and their subsets
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 54-56
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a8/
%G ru
%F VMUMM_2018_4_a8
A. V. Bogomolov. The paranormality of products and their subsets. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 54-56. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a8/

[1] Kombarov A.P., “Ob odnoi slaboi forme normalnosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 5, 48–51 | Zbl

[2] Katetov M., “Complete normality of Cartesian products”, Fund. math., 35 (1948), 271–274 | DOI | MR | Zbl

[3] Zenor P., “Countable paracompactness in product spaces”, Proc. Amer. Math. Soc., 30 (1971), 199–201 | DOI | MR | Zbl

[4] Chaber J., “Conditions which imply compactness in countably compact spaces”, Bull. Acad. pol. sci. Ser. sci. math. astronom. et phys., 24 (1976), 993–998 | MR

[5] Engelking R., Obschaya topologiya, Nauka, M., 1986 | MR

[6] Nyikos P., “Problem Section: Problem B”, Topol. Proc., 9 (1984), 367 | Zbl

[7] Kombarov A.P., “O $\Sigma$-proizvedeniyakh topologicheskikh prostranstv”, Dokl. AN SSSR, 199 (1971), 526–528 | Zbl

[8] Kombarov A. P., “On expandable discrete collections”, Topol. and Appl., 69 (1996), 283–292 | DOI | MR | Zbl

[9] Kombarov A.P., “Ob odnoi teoreme A. Stouna”, Dokl. AN SSSR, 270 (1983), 38–40 | MR | Zbl

[10] Kombarov A.P., “O proizvedenii normalnykh prostranstv. Ravnomernosti na $\Sigma$-proizvedeniyakh”, Dokl. AN SSSR, 205 (1972), 1033–1035 | Zbl