The paranormality of products and their subsets
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 54-56
Voir la notice de l'article provenant de la source Math-Net.Ru
A topological space is called paranormal if any countable discrete system of closed sets $\{D_n{:}n=1,2,3,\ldots\}$ can be expanded to a locally finite system of open sets $\{U_n{:}n=1,2,3,\ldots\}$, i.e., $D_n$ is contained in $U_n$ for all $n$ and
$D_m\cap U_n\neq\emptyset$ if and only if $D_m=D_n$. It is proved that if $X$ is a countably compact space whose cube is hereditarily paranormal, then $X$ is a metrizable space.
@article{VMUMM_2018_4_a8,
author = {A. V. Bogomolov},
title = {The paranormality of products and their subsets},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {54--56},
publisher = {mathdoc},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a8/}
}
A. V. Bogomolov. The paranormality of products and their subsets. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 54-56. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a8/