Diffraction of plane sound waves on a hard-soft half-plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 34-40
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A simple method is proposed for solving the problems of diffraction of plane acoustic waves on a half-plane with dissimilar boundary conditions on its surfaces (the Neumann condition on one surface and the Dirichlet condition on the opposite surface). In contrast to existing techniques, the proposed method allows one to obtain analytical solutions valid both near the half-plane edge and at far distances from the edge.
@article{VMUMM_2018_4_a5,
     author = {M. Sh. Israilov},
     title = {Diffraction of plane sound waves on a hard-soft half-plane},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {34--40},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a5/}
}
TY  - JOUR
AU  - M. Sh. Israilov
TI  - Diffraction of plane sound waves on a hard-soft half-plane
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 34
EP  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a5/
LA  - ru
ID  - VMUMM_2018_4_a5
ER  - 
%0 Journal Article
%A M. Sh. Israilov
%T Diffraction of plane sound waves on a hard-soft half-plane
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 34-40
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a5/
%G ru
%F VMUMM_2018_4_a5
M. Sh. Israilov. Diffraction of plane sound waves on a hard-soft half-plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 34-40. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a5/

[1] Rawlins A. D., “The solution of a mixed boundary value problem in the theory of diffraction by a semi-infinite plane”, Proc. Roy. Soc. London, A346:1647 (1975), 469–484 | DOI | MR | Zbl

[2] Meixner J., The behavior of electromagnetic fields at edges, Res. Rept. N EM-72, New York University, Institute of Mathematical Scienses, N.Y., 1954 | MR

[3] Fridlender F., Zvukovye impulsy, IL, M., 1962

[4] Bateman H., Erdelyi A., Higher Transcendental Functions, v. 2, McGraw-Hill Book Co. Inc., N.Y., 1953

[5] Holmes M. H., Introduction to Perturbation Methods, Springer, N. Y., 1995 | MR | Zbl

[6] Klinger R. E., McNerney M. T., Busch-Vishniac I., Design Guide for Highway Noise Barriers, Res. Rept., U.S. Dep. Transport, 2003

[7] Hohenwarter D., “Railway noise propagation models”, J. Sound and Vibr., 141:3 (1990), 17–41 | DOI