Mechanical systems with rapidly vibrating constraints
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 29-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a natural Lagrangian system on which a supplementary holonomic nonstationary constraint is imposed; the dependence on time is included in this constraint by the parameter performing rapid periodic oscillations. Such a constraint is called a vibrating constraint. The equations of motion of a system with a vibrating constraint are obtained in the form of Hamilton's equations. It is shown that the structure of the Hamiltonian of the system has a special form convenient for deriving the averaged equations. Usage of the averaging method allows us to obtain the limit equations of motion of the system as the frequency of vibrations tends to infinity and to prove the uniform convergence of the solutions of Hamilton's equations to the solutions of the limit equations on a finite interval of time. Some examples are discussed.
@article{VMUMM_2018_4_a4,
     author = {E. I. Kugushev and M. A. Levin and T. V. Popova},
     title = {Mechanical systems with rapidly vibrating constraints},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--34},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a4/}
}
TY  - JOUR
AU  - E. I. Kugushev
AU  - M. A. Levin
AU  - T. V. Popova
TI  - Mechanical systems with rapidly vibrating constraints
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 29
EP  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a4/
LA  - ru
ID  - VMUMM_2018_4_a4
ER  - 
%0 Journal Article
%A E. I. Kugushev
%A M. A. Levin
%A T. V. Popova
%T Mechanical systems with rapidly vibrating constraints
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 29-34
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a4/
%G ru
%F VMUMM_2018_4_a4
E. I. Kugushev; M. A. Levin; T. V. Popova. Mechanical systems with rapidly vibrating constraints. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 29-34. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a4/

[1] Bogolyubov H. H., Mitropolskii Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatlit, M., 1963 | MR

[2] Bolotin S.V., Karapetyan A.V., Kugushev E.I., Treschev D.V., Teoreticheskaya mekhanika, Izd. tsentr “Akademiya”, M., 2010

[3] Zhuravlev V.F., Klimov D.M., Prikladnye metody v teorii kolebanii, Nauka, M., 1988 | MR

[4] Petrov A.G., “O vibratsionnoi energii konservativnoi mekhanicheskoi sistemy”, Dokl. RAN, 431:6 (2010), 762–765 | MR | Zbl

[5] Kugushev E.I., Levin M.A., Popova T.V., “O golonomnykh sistemakh na bystro koleblyuschemsya osnovanii”, Prikl. matem. i mekhan., 81:5 (2017), 523–533 | MR

[6] Kugushev E.I., Levin M.A., Popova T.V., “O polozheniyakh ravnovesiya i statsionarnykh dvizheniyakh golonomnykh sistem na vibriruyuschem osnovanii”, Ustoichivost i kolebaniya nelineinykh sistem upravleniya, Mat-ly XIII Mezhdunar. konf. (1–3 iyunya 2016 g., Moskva), ed. V.N. Tkhai, IPU RAN, M., 2016, 223–225

[7] Rubanovskii V.N., Samsonov V.A., Ustoichivost statsionarnykh dvizhenii v primerakh i zadachakh, Nauka, M., 1988