Mechanical systems with rapidly vibrating constraints
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 29-34
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a natural Lagrangian system on which a supplementary holonomic nonstationary constraint is imposed; the dependence on time is included in this constraint by the parameter performing rapid periodic oscillations. Such a constraint is called a vibrating constraint. The equations of motion of a system with a vibrating constraint are obtained in the form of Hamilton's equations. It is shown that the structure of the Hamiltonian of the system has a special form convenient for deriving the averaged equations. Usage of the averaging method allows us to obtain the limit equations of motion of the system as the frequency of vibrations tends to infinity and to prove the uniform convergence of the solutions of Hamilton's equations to the solutions of the limit equations on a finite interval of time. Some examples are discussed.
			
            
            
            
          
        
      @article{VMUMM_2018_4_a4,
     author = {E. I. Kugushev and M. A. Levin and T. V. Popova},
     title = {Mechanical systems with rapidly vibrating constraints},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--34},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a4/}
}
                      
                      
                    TY - JOUR AU - E. I. Kugushev AU - M. A. Levin AU - T. V. Popova TI - Mechanical systems with rapidly vibrating constraints JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 29 EP - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a4/ LA - ru ID - VMUMM_2018_4_a4 ER -
E. I. Kugushev; M. A. Levin; T. V. Popova. Mechanical systems with rapidly vibrating constraints. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 29-34. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a4/
