Fomenko–Zieschang invariants of topological billiards bounded by confocal parabolas
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 22-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A topological (Liouville) classification of integrable billiards in locally flat compact domains bounded by arcs of confocal parabolas is obtained using methods of the Fomenko–Zieschang theory on invariants of integrable systems.
@article{VMUMM_2018_4_a3,
     author = {V. V. Vedyushkina},
     title = {Fomenko{\textendash}Zieschang invariants of topological billiards bounded by confocal parabolas},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {22--28},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a3/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
TI  - Fomenko–Zieschang invariants of topological billiards bounded by confocal parabolas
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 22
EP  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a3/
LA  - ru
ID  - VMUMM_2018_4_a3
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%T Fomenko–Zieschang invariants of topological billiards bounded by confocal parabolas
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 22-28
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a3/
%G ru
%F VMUMM_2018_4_a3
V. V. Vedyushkina. Fomenko–Zieschang invariants of topological billiards bounded by confocal parabolas. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 22-28. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a3/

[1] Birkgof Dzh.D., Dinamicheskie sistemy, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999

[2] Kozlov V.V., Treschev D.V., Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991

[3] Fokicheva V.V., “Klassifikatsiya billiardnykh dvizhenii v oblastyakh, ogranichennykh sofokusnymi parabolami”, Matem. sb., 205:8 (2014), 139–160 | DOI | MR | Zbl

[4] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999

[5] Fomenko A.T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Matem., 52:2 (1988), 378–407 | Zbl

[6] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1(265) (1989), 145–173 | MR

[7] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Matem., 54:3 (1990), 546–575 | Zbl

[8] Fokicheva V.V., “Opisanie osobennostei sistemy bilyarda v oblastyakh, ogranichennykh sofokusnymi ellipsami i giperbolami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 4, 18–27 | MR | Zbl

[9] Fokicheva V.V., “Topologicheskaya klassifikatsiya billiardov v lokalno-ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl