Optimal control, everywhere dense torus winding, and Wolstenholme primes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 60-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, using Galois theory and the knowledge of the Wolstenholme primes distribution, we construct an optimal control problem where the control runs an everywhere dense winding of a $k$-dimensional torus for arbitrary natural $k\leqslant 249~998~919$ given in advance.
@article{VMUMM_2018_4_a10,
     author = {D. D. Kiselev},
     title = {Optimal control, everywhere dense torus winding, and {Wolstenholme} primes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {60--62},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - Optimal control, everywhere dense torus winding, and Wolstenholme primes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 60
EP  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/
LA  - ru
ID  - VMUMM_2018_4_a10
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T Optimal control, everywhere dense torus winding, and Wolstenholme primes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 60-62
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/
%G ru
%F VMUMM_2018_4_a10
D. D. Kiselev. Optimal control, everywhere dense torus winding, and Wolstenholme primes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 60-62. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/

[1] Zelikin M.I., Kiselev D.D., Lokutsievskii L.V., “Optimalnoe upravlenie i teoriya Galua”, Matem. sb., 204:11 (2013), 83–98 | DOI | MR | Zbl

[2] McIntosh R. J., Roettger E. L., “A search for Fibonacci–Wieferich and Wolstenholme primes”, Math. Comput., 76 (2007), 2087–2094 | DOI | MR | Zbl

[3] Kiselev D. D., “Applications of Galois theory to optimal control”, CEUR Workshop Proc., 1894, 2017, 50–56 | MR