Optimal control, everywhere dense torus winding, and Wolstenholme primes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 60-62
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, using Galois theory and the knowledge of the Wolstenholme primes distribution, we construct an optimal control problem where the control runs an everywhere dense winding of a $k$-dimensional torus for arbitrary natural $k\leqslant 249~998~919$ given in advance.
@article{VMUMM_2018_4_a10,
author = {D. D. Kiselev},
title = {Optimal control, everywhere dense torus winding, and {Wolstenholme} primes},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {60--62},
year = {2018},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/}
}
D. D. Kiselev. Optimal control, everywhere dense torus winding, and Wolstenholme primes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 60-62. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/
[1] Zelikin M.I., Kiselev D.D., Lokutsievskii L.V., “Optimalnoe upravlenie i teoriya Galua”, Matem. sb., 204:11 (2013), 83–98 | DOI | MR | Zbl
[2] McIntosh R. J., Roettger E. L., “A search for Fibonacci–Wieferich and Wolstenholme primes”, Math. Comput., 76 (2007), 2087–2094 | DOI | MR | Zbl
[3] Kiselev D. D., “Applications of Galois theory to optimal control”, CEUR Workshop Proc., 1894, 2017, 50–56 | MR