Optimal control, everywhere dense torus winding, and Wolstenholme primes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 60-62
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, using Galois theory and the knowledge of the Wolstenholme primes distribution, we construct an optimal control problem where the control runs an everywhere dense winding of a $k$-dimensional torus for arbitrary natural $k\leqslant 249~998~919$ given in advance.
@article{VMUMM_2018_4_a10,
author = {D. D. Kiselev},
title = {Optimal control, everywhere dense torus winding, and {Wolstenholme} primes},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {60--62},
publisher = {mathdoc},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/}
}
TY - JOUR AU - D. D. Kiselev TI - Optimal control, everywhere dense torus winding, and Wolstenholme primes JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 60 EP - 62 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/ LA - ru ID - VMUMM_2018_4_a10 ER -
D. D. Kiselev. Optimal control, everywhere dense torus winding, and Wolstenholme primes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 60-62. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/