Optimal control, everywhere dense torus winding, and Wolstenholme primes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 60-62

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, using Galois theory and the knowledge of the Wolstenholme primes distribution, we construct an optimal control problem where the control runs an everywhere dense winding of a $k$-dimensional torus for arbitrary natural $k\leqslant 249~998~919$ given in advance.
@article{VMUMM_2018_4_a10,
     author = {D. D. Kiselev},
     title = {Optimal control, everywhere dense torus winding, and {Wolstenholme} primes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {60--62},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - Optimal control, everywhere dense torus winding, and Wolstenholme primes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 60
EP  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/
LA  - ru
ID  - VMUMM_2018_4_a10
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T Optimal control, everywhere dense torus winding, and Wolstenholme primes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 60-62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/
%G ru
%F VMUMM_2018_4_a10
D. D. Kiselev. Optimal control, everywhere dense torus winding, and Wolstenholme primes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 60-62. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a10/