Frobenius differential-algebraic universums on complex algebraic curves
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 3-9
Voir la notice de l'article provenant de la source Math-Net.Ru
In terms of differential generators and differential relations for a finitely generated commutative-associative differential $C$-algebra $A$ (with a unit element) there are studied and determined necessary and sufficient conditions in order under any Taylor homomorphism $\widetilde{\psi}_M\colon A\to\mathbb{C}[[z]]$ the transcendence degree of the image $\widetilde{\psi}_M(A)$ over $C$ does not exceed 1 ($\widetilde{\psi}_M (a)\stackrel{{\rm def}}=\sum\limits_{m=0}^{\infty}\psi_M(a^{(m)})\frac{z^m}{m!}$, where $a \in A$, $M \in {\rm Spec}_{\mathbb{C}}A$ is a maximal ideal in $A$, $a^{(m)}$ a result of $m$-fold application of the signature derivation of the element $a$ and $\psi_M$ the canonic epimorphism $A\to A/M$).
@article{VMUMM_2018_4_a0,
author = {O. V. Gerasimova and Yu. P. Razmyslov},
title = {Frobenius differential-algebraic universums on complex algebraic curves},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--9},
publisher = {mathdoc},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a0/}
}
TY - JOUR AU - O. V. Gerasimova AU - Yu. P. Razmyslov TI - Frobenius differential-algebraic universums on complex algebraic curves JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 3 EP - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a0/ LA - ru ID - VMUMM_2018_4_a0 ER -
O. V. Gerasimova; Yu. P. Razmyslov. Frobenius differential-algebraic universums on complex algebraic curves. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a0/