Frobenius differential-algebraic universums on complex algebraic curves
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In terms of differential generators and differential relations for a finitely generated commutative-associative differential $C$-algebra $A$ (with a unit element) there are studied and determined necessary and sufficient conditions in order under any Taylor homomorphism $\widetilde{\psi}_M\colon A\to\mathbb{C}[[z]]$ the transcendence degree of the image $\widetilde{\psi}_M(A)$ over $C$ does not exceed 1 ($\widetilde{\psi}_M (a)\stackrel{{\rm def}}=\sum\limits_{m=0}^{\infty}\psi_M(a^{(m)})\frac{z^m}{m!}$, where $a \in A$, $M \in {\rm Spec}_{\mathbb{C}}A$ is a maximal ideal in $A$, $a^{(m)}$ a result of $m$-fold application of the signature derivation of the element $a$ and $\psi_M$ the canonic epimorphism $A\to A/M$).
@article{VMUMM_2018_4_a0,
     author = {O. V. Gerasimova and Yu. P. Razmyslov},
     title = {Frobenius differential-algebraic universums on complex algebraic curves},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--9},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a0/}
}
TY  - JOUR
AU  - O. V. Gerasimova
AU  - Yu. P. Razmyslov
TI  - Frobenius differential-algebraic universums on complex algebraic curves
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 3
EP  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a0/
LA  - ru
ID  - VMUMM_2018_4_a0
ER  - 
%0 Journal Article
%A O. V. Gerasimova
%A Yu. P. Razmyslov
%T Frobenius differential-algebraic universums on complex algebraic curves
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 3-9
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a0/
%G ru
%F VMUMM_2018_4_a0
O. V. Gerasimova; Yu. P. Razmyslov. Frobenius differential-algebraic universums on complex algebraic curves. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2018), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2018_4_a0/

[1] Veil G., Klassicheskie gruppy. Ikh invarianty i predstavleniya, IL, M., 1947

[2] Gerasimova O.V., Pogudin G.A., Razmyslov Yu.P., “Rolling simplexes and their commensurability, III (sootnosheniya Kapelli i ikh primenenie v differentsialnykh algebrakh)”, Fund. i prikl. matem., 19:6 (2014), 7–24 | MR

[3] Gerasimova O.V., Razmyslov Yu.P., “Neaffinnykh differentsialno-algebraicheskikh krivykh ne suschestvuet”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 3, 3–8 | MR | Zbl

[4] Razmyslov Yu.P., “Zakony katyaschikhsya simpleksov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 6, 38–42

[5] Gerasimova O.V., “Rolling simplexes and their commensurability, II (lemma o direktrise i fokuse)”, Fund. i prikl. matem., 19:1 (2014), 13–19 | MR

[6] Shafarevich I.R., Osnovy algebraicheskoi geometrii, MTsNMO, M., 2007

[7] Pogudin G. A., “A differential analog of the Noether normalization lemma”, Int. Math. Res. Notices, 191:4 (2016), 1177–1199 | MR

[8] Kolchin E. R., Differential algebra and algebraic groups, Academic Press, 1973 | MR | Zbl

[9] Pogudin G.A., “The primitive element theorem for differential fields with zero derivation on the base field”, J. Pure and Appl. Algebra, 219:9 (2015), 4035–4041 | DOI | MR | Zbl

[10] Razmyslov Yu.P., “An explanation (field equations in accordance with Tycho Brahe)”, J. Math. Sci., 191:5 (2013), 726–742 | DOI | MR | Zbl