The Lindel\"off number functional spaces over monolithic compacta
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 57-60
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a compactum, $\tau$ be an infinite cardinal, and $t(X)\le\tau$. In this case, $l(C_p(X))\le 2^\tau$. If $X$ is $\tau$-monolithic, then $l(C_p(X))\le \tau^+$. In addition, if $X$ is zero-dimensional and there are no $\tau ^+$-Aronszajn trees, then $l(C_p(X))\le \tau$.
@article{VMUMM_2018_3_a8,
author = {D. P. Baturov and E. A. Reznichenko},
title = {The {Lindel\"off} number functional spaces over monolithic compacta},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {57--60},
publisher = {mathdoc},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a8/}
}
TY - JOUR AU - D. P. Baturov AU - E. A. Reznichenko TI - The Lindel\"off number functional spaces over monolithic compacta JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 57 EP - 60 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a8/ LA - ru ID - VMUMM_2018_3_a8 ER -
D. P. Baturov; E. A. Reznichenko. The Lindel\"off number functional spaces over monolithic compacta. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 57-60. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a8/