Waves on the surface of an ideal incompressible heavy fluid under wind loads
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 50-56
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The motion of the half-space of an ideal incompressible fluid is studied in the field of gravity under the action of periodic pressure on its surface. The problem is solved in the approximation of the theory of small-amplitude waves. An analytical solution for the velocity potential, the velocity field, and the form of the free surface are found. An expression of the horizontal force is obtained in the case of a traveling wave.
@article{VMUMM_2018_3_a7,
     author = {A. V. Zvyagin and K. V. Sapunov},
     title = {Waves on the surface of an ideal incompressible heavy fluid under wind loads},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--56},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a7/}
}
TY  - JOUR
AU  - A. V. Zvyagin
AU  - K. V. Sapunov
TI  - Waves on the surface of an ideal incompressible heavy fluid under wind loads
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 50
EP  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a7/
LA  - ru
ID  - VMUMM_2018_3_a7
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%A K. V. Sapunov
%T Waves on the surface of an ideal incompressible heavy fluid under wind loads
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 50-56
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a7/
%G ru
%F VMUMM_2018_3_a7
A. V. Zvyagin; K. V. Sapunov. Waves on the surface of an ideal incompressible heavy fluid under wind loads. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 50-56. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a7/

[1] Prokofev V.V., Takmazyan A.K., Filatov E.V., “Ispytanie i raschet dvizheniya modeli sudna s pryamotochnym volnovym dvizhitelem”, Izv. RAN. Mekhan. zhidkosti i gaza, 2017, no. 4, 24–38 | DOI | Zbl

[2] Chikarenko V.G., “Sravnenie effektivnosti raboty pryamougolnogo i treugolnogo podvodnykh parusov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 3, 32–35

[3] Prokofev V.V., Takmazyan A.K., Filatov E.V., Chikarenko V.G., Yakimov A.Yu., Sudovoi volnodvizhitel, Patent RF No2528449, M., 2014

[4] Belyaev V.A., Kuznetsov D.S., Chizhiumov S.D., “Proekty plavnikovykh dvizhitelei”, Mat-ly Mezhdunar. nauch. foruma studentov, aspirantov i molodykh uchenykh stran ATR, v. 1, DVFU, Vladivostok, 2012, 885–887

[5] Sretenskii L.N., Teoriya volnovykh dvizhenii zhidkosti, Nauka, M., 1977

[6] Stocker J.J., Water waves. The Mathematicial Theory with Applications, Interscience Publishers, Inc., N. Y., 1957 | MR

[7] Lamb H., “On deep water waves”, Proc. London Math. Soc., 2:1 (1905), 371–400 | DOI | MR | Zbl

[8] Gakhov F.D., Kraevye zadachi, Nauka, M., 1977 | MR

[9] Sedov L.I., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1970 | MR

[10] Kochin N.E., Kibel I.A., Roze N.V., Teoreticheskaya gidromekhanika, v. 1, Fizmatgiz, M., 1963