Waves on the surface of an ideal incompressible heavy fluid under wind loads
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 50-56
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The motion of the half-space of an ideal incompressible fluid is studied in the field of gravity under the action of periodic pressure on its surface. The problem is solved in the approximation of the theory of small-amplitude waves. An analytical solution for the velocity potential, the velocity field, and the form of the free surface are found. An expression of the horizontal force is obtained in the case of a traveling wave.
			
            
            
            
          
        
      @article{VMUMM_2018_3_a7,
     author = {A. V. Zvyagin and K. V. Sapunov},
     title = {Waves on the surface of an ideal incompressible heavy fluid under wind loads},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--56},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a7/}
}
                      
                      
                    TY - JOUR AU - A. V. Zvyagin AU - K. V. Sapunov TI - Waves on the surface of an ideal incompressible heavy fluid under wind loads JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 50 EP - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a7/ LA - ru ID - VMUMM_2018_3_a7 ER -
%0 Journal Article %A A. V. Zvyagin %A K. V. Sapunov %T Waves on the surface of an ideal incompressible heavy fluid under wind loads %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2018 %P 50-56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a7/ %G ru %F VMUMM_2018_3_a7
A. V. Zvyagin; K. V. Sapunov. Waves on the surface of an ideal incompressible heavy fluid under wind loads. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 50-56. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a7/