Formulation of problems in the general Kirchhoff–Love theory of inhomogeneous anisotropic plates
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 43-50
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the procedure of reducing the three-dimensional problem of elasticity theory for a thin inhomogeneous anisotropic plate to a two-dimensional problem in the median plane. The plate is in equilibrium under the action of bulk and surface forces of general form. A notion of internal force factors is introduced. Equations for force factors (equilibrium equations in the median plane) are obtained from the thickness-averaged three-dimensional equations of elasticity theory. In order to establish the relation between the internal force factors and the characteristics of the deformed middle surface, we use some prior assumptions on the distribution of displacements along the thickness of the plate. To arrange these assumptions in order, the displacements of plate points are expanded into Taylor series in the transverse coordinate with consideration of the physical hypotheses on the deformation of a material fiber that is originally perpendicular to the median plane. The well-known Kirchhoff–Love hypothesis is considered in detail. A closed system of equations for the theory of inhomogeneous anisotropic plates is obtained on the basis of the Kirchhoff–Love hypothesis. The boundary conditions are formulated from the Lagrange variation principle.
@article{VMUMM_2018_3_a6,
     author = {V. I. Gorbachev and L. A. Kabanova},
     title = {Formulation of problems in the general {Kirchhoff{\textendash}Love} theory of inhomogeneous anisotropic plates},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {43--50},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a6/}
}
TY  - JOUR
AU  - V. I. Gorbachev
AU  - L. A. Kabanova
TI  - Formulation of problems in the general Kirchhoff–Love theory of inhomogeneous anisotropic plates
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 43
EP  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a6/
LA  - ru
ID  - VMUMM_2018_3_a6
ER  - 
%0 Journal Article
%A V. I. Gorbachev
%A L. A. Kabanova
%T Formulation of problems in the general Kirchhoff–Love theory of inhomogeneous anisotropic plates
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 43-50
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a6/
%G ru
%F VMUMM_2018_3_a6
V. I. Gorbachev; L. A. Kabanova. Formulation of problems in the general Kirchhoff–Love theory of inhomogeneous anisotropic plates. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 43-50. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a6/

[1] Vekua I.N., Nekotorye obschie metody postroeniya razlichnykh variantov teorii obolochek, Nauka, M., 1982 | MR

[2] Kilchevskii N.A., Osnovy analiticheskoi mekhaniki obolochek, Izd-vo AN USSR, M., 1963

[3] Vlasov V.Z., Izbrannye trudy, v. 1, AN SSSR, M., 1962 | MR

[4] Vlasov V.V., Metod nachalnykh funktsii v zadachakh teorii uprugosti i stroitelnoi mekhaniki, Stroiizdat, M., 1975

[5] Agalovyan L.A., Asimptoticheskaya teoriya anizotropnykh plastin i obolochek, Nauka, M., 1997

[6] Vorovich I.I., Nekotorye rezultaty i problemy asimptoticheskoi teorii plastin i obolochek, Mat-ly I Vsesoyuz. shkoly po teorii i chislennym metodam rascheta obolochek i plastin, Izd-vo Tbilis. un-ta, Tbilisi, 1975, 51–149

[7] Goldenveizer A.L., Teoriya uprugikh tonkikh obolochek, Nauka, M., 1976 | MR

[8] Ambartsumyan S.A., Obschaya teoriya anizotropnykh obolochek, Nauka, M., 1974 | MR

[9] Dudchenko A.A., Lure S.A., Obraztsov I.F., “Anizotropnye mnogosloinye plastiny i obolochki”, Mekhanika deformiruemogo tverdogo tela, 15, VINITI, M., 1983, 3–68 | MR

[10] Lure A.I., Statika tonkostennykh uprugikh obolochek, Gostekhizdat, M.–L., 1947 | MR

[11] Grigorenko Ya.M., Vasilenko A.T., Zadachi statiki anizotropnykh neodnorodnykh obolochek, Nauka, M., 1992 | MR

[12] Gorbachev V.I., Simakov V.A., “Operatornyi metod resheniya zadach o ravnovesii uprugoi neodnorodnoi anizotropnoi plity”, Izv. RAN. Mekhan. tverdogo tela, 2 (2004), 55–64

[13] Gorbachev V.I., Tolstykh O.Yu., “Ob odnom podkhode k postroeniyu tekhnicheskoi teorii neodnorodnoi anizotropnoi balki”, Izv. RAN. Mekhan. tverdogo tela, 6 (2005), 137–121

[14] Gorbachev V.I., Firsov L.L., “Novaya postanovka zadachi teorii uprugosti dlya sloya”, Izv. RAN. Mekhan. tverdogo tela, 1 (2011), 114–121

[15] Vasilev V.V., Mekhanika konstruktsii iz kompozitsionnykh materialov, Mashinostroenie, M., 1988

[16] Pobedrya B.E., Georgievskii D.V., Lektsii po teorii uprugosti, Editorial URSS, M., 1999

[17] Zubchaninov V.G., Osnovy teorii uprugosti i plastichnosti, Vysshaya shkola, M., 1990

[18] Ogibalov P.M., Koltunov M.A., Obolochki i plastiny, Izd-vo MGU, M., 1969

[19] Timoshenko S.P., Istoriya nauki o soprotivlenii materialov: S kratkimi svedeniyami iz istorii teorii uprugosti i teorii sooruzhenii, Librokom, M., 2009

[20] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR

[21] Pobedrya B.E., Chislennye metody v teorii uprugosti i plastichnosti, Izd-vo MGU, M., 1995 | MR

[22] Berdichevskii V.L., Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983 | MR

[23] Mikhlin S.G., Variatsionnye metody v matematicheskoi fizike, GITTL, M., 1957 | MR

[24] Andreev A.N., Nemirovskii Yu.V., Mnogosloinye anizotropnye obolochki i plastiny, Nauka, Novosibirsk, 2001

[25] Gorbachëv V.I., “Inzhenernaya teoriya deformirovaniya neodnorodnykh plastin iz kompozitsionnykh materialov”, Mekhanika kompozitsionnykh materialov i konstruktsii, 22:4 (2016), 585–601