A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 34-43

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations of motion for a dynamically symmetric $n$-dimensional fixed rigid body-pendulum situated in a nonconservative force field are studied. The form of these equations is taken from the dynamics of real fixed rigid bodies placed in a homogeneous flow of an incident medium. The complete list of (in general) transcendental first integrals expressed in terms of a finite combination of elementary functions is found.
@article{VMUMM_2018_3_a5,
     author = {M. V. Shamolin},
     title = {A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {34--43},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 34
EP  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/
LA  - ru
ID  - VMUMM_2018_3_a5
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 34-43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/
%G ru
%F VMUMM_2018_3_a5
M. V. Shamolin. A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 34-43. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/