A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 34-43
Voir la notice de l'article provenant de la source Math-Net.Ru
The equations of motion for a dynamically symmetric $n$-dimensional fixed rigid body-pendulum situated in a nonconservative force field are studied. The form of these equations is taken from the dynamics of real fixed rigid bodies placed in a homogeneous flow of an incident medium. The complete list of (in general) transcendental first integrals expressed in terms of a finite combination of elementary functions is found.
@article{VMUMM_2018_3_a5,
author = {M. V. Shamolin},
title = {A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {34--43},
publisher = {mathdoc},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/}
}
TY - JOUR AU - M. V. Shamolin TI - A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 34 EP - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/ LA - ru ID - VMUMM_2018_3_a5 ER -
%0 Journal Article %A M. V. Shamolin %T A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2018 %P 34-43 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/ %G ru %F VMUMM_2018_3_a5
M. V. Shamolin. A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 34-43. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/