A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 34-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equations of motion for a dynamically symmetric $n$-dimensional fixed rigid body-pendulum situated in a nonconservative force field are studied. The form of these equations is taken from the dynamics of real fixed rigid bodies placed in a homogeneous flow of an incident medium. The complete list of (in general) transcendental first integrals expressed in terms of a finite combination of elementary functions is found.
@article{VMUMM_2018_3_a5,
     author = {M. V. Shamolin},
     title = {A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {34--43},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 34
EP  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/
LA  - ru
ID  - VMUMM_2018_3_a5
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 34-43
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/
%G ru
%F VMUMM_2018_3_a5
M. V. Shamolin. A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 34-43. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a5/

[1] Georgievskii D.V., Shamolin M.V., “Kinematika i geometriya mass tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^{n}$”, Dokl. RAN, 380:1 (2001), 47–50

[2] Georgievskii D.V., Shamolin M.V., “Obobschennye dinamicheskie uravneniya Eilera dlya tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^{n}$”, Dokl. RAN, 383:5 (2002), 635–637 | MR

[3] Sedov L.I., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1983 | MR

[4] Chaplygin S.A., Izbrannye trudy, Nauka, M., 1976 | MR

[5] Chaplygin S.A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[6] Shamolin M.V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Ekzamen, M., 2007

[7] Shamolin M.V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fund. i prikl. matem., 14:3 (2008), 3–237

[8] Shamolin M.V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 125, VINITI, M., 2013, 5–254

[9] Shamolin M.V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Uspekhi matem. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl

[10] Shamolin M.V., “Mnogomernyi mayatnik v nekonservativnom silovom pole”, Dokl. RAN, 460:2 (2015), 165–169 | DOI | MR