Justification of some approach to implementation of orthogonal expansions for approximate integration of canonical systems of second order
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 29-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A solvability theorem for a nonlinear system of equations with respect to approximate values of Fourier–Chebyshev coefficients is proved. This theorem is a theoretical substantiation for the numerical solution of second order ordinary differential equations using Chebyshev series and Markov quadrature formulas.
@article{VMUMM_2018_3_a4,
     author = {O. B. Arushanyan and S. F. Zaletkin},
     title = {Justification of some approach to implementation of orthogonal expansions for approximate integration of canonical systems of second order},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--33},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a4/}
}
TY  - JOUR
AU  - O. B. Arushanyan
AU  - S. F. Zaletkin
TI  - Justification of some approach to implementation of orthogonal expansions for approximate integration of canonical systems of second order
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 29
EP  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a4/
LA  - ru
ID  - VMUMM_2018_3_a4
ER  - 
%0 Journal Article
%A O. B. Arushanyan
%A S. F. Zaletkin
%T Justification of some approach to implementation of orthogonal expansions for approximate integration of canonical systems of second order
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 29-33
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a4/
%G ru
%F VMUMM_2018_3_a4
O. B. Arushanyan; S. F. Zaletkin. Justification of some approach to implementation of orthogonal expansions for approximate integration of canonical systems of second order. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 29-33. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a4/

[1] Zaletkin S.F., “Chislennoe integrirovanie obyknovennykh differentsialnykh uravnenii s ispolzovaniem ortogonalnykh razlozhenii”, Matem. modelir., 22:1 (2010), 69–85 | MR | Zbl

[2] Arushanyan O.B., Volchenskova N.I., Zaletkin S.F., “O primenenii ortogonalnykh razlozhenii dlya priblizhennogo integrirovaniya obyknovennykh differentsialnykh uravnenii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2010, no. 4, 40–43 | MR | Zbl

[3] Arushanyan O.B., Volchenskova N.I., Zaletkin S.F., “Vychislenie koeffitsientov razlozheniya resheniya zadachi Koshi v ryad po mnogochlenam Chebysheva”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 5, 24–30 | MR | Zbl

[4] Arushanyan O.B., Zaletkin S.F., “O primenenii formuly chislennogo integrirovaniya Markova v ortogonalnykh razlozheniyakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2009, no. 6, 18–22 | MR | Zbl

[5] Zaletkin S.F., “Formula chislennogo integrirovaniya Markova s dvumya fiksirovannymi uzlami i ee primenenie v ortogonalnykh razlozheniyakh”, Vychisl. metody i program., 6 (2005), 141–157

[6] Berezin I.S., Zhidkov N.P., Metody vychislenii, v. 2, Fizmatgiz, M., 1962 | MR