Topology of Liouville bundles of integrable billiard in non-convex domains
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 21-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Flat billiards are studied in non-convex domains bounded by segments of confocal quadrics and also in domains bounded by segments of mutually perpendicular straignt lines. The topology of isoenergetic surfaces of such billiards is studied by calculating invariants of rough Liouville's equivalency also known as Fomenko's molecule.
@article{VMUMM_2018_3_a3,
     author = {V. A. Moskvin},
     title = {Topology of {Liouville} bundles of integrable billiard in non-convex domains},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--29},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a3/}
}
TY  - JOUR
AU  - V. A. Moskvin
TI  - Topology of Liouville bundles of integrable billiard in non-convex domains
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 21
EP  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a3/
LA  - ru
ID  - VMUMM_2018_3_a3
ER  - 
%0 Journal Article
%A V. A. Moskvin
%T Topology of Liouville bundles of integrable billiard in non-convex domains
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 21-29
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a3/
%G ru
%F VMUMM_2018_3_a3
V. A. Moskvin. Topology of Liouville bundles of integrable billiard in non-convex domains. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 21-29. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a3/

[1] Tabachnikov S.L., Geometriya i bilyardy, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.; Izhevsk, 2011

[2] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy, v. 1, Geometriya, topologiya, klassifikatsiya, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999 | MR

[3] Fokicheva V.V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl

[4] Dragovic V., Radnovic M., “Bifurcations of Liouville tori in elliptical billiards”, Regullar Chaotic Dyn., 14 (2009), 479–494 | DOI | MR | Zbl

[5] Dragovich B., Radnovich M., Integriruemye bilyardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010

[6] Bolsinov A.V., Fomenko A.T., Oshemkov A.A., Topological methods in the theory of integrable hamiltonian, Cambridge Sci. Publ., Cambridge, 2006 | MR

[7] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. cb., 199:9 (2008), 3–96 | DOI | MR | Zbl

[8] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Simmetrichnye i neprivodimye abstraktnye mnogogranniki”, Matematika, Sovremennye problemy matematiki i mekhaniki, 3, no. 2, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2009, 58–97

[9] Kudryavtseva E.A., Fomenko A.T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN. Ser. matem., 446:6 (2012), 615–617 | Zbl

[10] Kudryavtseva E.A., Fomenko A.T., “Lyubaya konechnaya gruppa yavlyaetsya gruppoi simmetrii nekotoroi karty (atoma-bifurkatsii)”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 3, 21–29 | MR | Zbl

[11] Fokicheva V.V., Fomenko A.T., “Integriruemye bilyardy modeliruyut vazhnye integriruemye sluchai dinamiki tverdogo tela”, Dokl. RAN. Ser. matem., 465:2 (2015), 150–153 | DOI | MR | Zbl

[12] Fokicheva V., Fomenko T., “Billiard systems as the models for the rigid body dynamics”, Studies in Systems, Decision and Control, Advances in Dynamical Systems and Control, 69, eds. V. Sadovnichiy, M. Zgurovsky, Springer; Int. Publ. Switzerland, 2016, 13–32 | DOI | MR

[13] Vedyushkina V.V., Fomenko A.T., “Integriruemye topologicheskie bilyardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | DOI | MR | Zbl

[14] Kudryavtseva E.A., “Analog teoremy Liuvillya dlya integriruemykh gamiltonovykh sistem s nepolnymi potokami”, Dokl. RAN, 445:4 (2012), 383–385 | MR | Zbl

[15] Kudryavtseva E., “An analogue of the Liouville theorem for integrable Hamiltonian systems with incomplete flows”, Doklady Math., 86:1 (2012), 527–529, arXiv: math.DG/1203.5455 | DOI | MR | Zbl