Existence of words over a three-letter alphabet not containing squares with errors of replacing
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 8-16

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns some problems related to the existence of periodic structures in words from formal languages. Squares, i.e. fragments of the form $xx$, where $x$ is some word, and $\Delta$-squares, i.e. fragments of the form $xy$, where the word $x$ is different from the word $y$ by not more than $\Delta$ letters, are considered as periodic structures. We show the existence of arbitrarily long words over three-letter alphabet not containing $\Delta$-squares with the period exceeding $\Delta$. In particular, such words are constructed for all possible values $\Delta$.
@article{VMUMM_2018_3_a1,
     author = {N. V. Kotlyarov},
     title = {Existence of words over a three-letter alphabet not containing squares with errors of replacing},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {8--16},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a1/}
}
TY  - JOUR
AU  - N. V. Kotlyarov
TI  - Existence of words over a three-letter alphabet not containing squares with errors of replacing
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 8
EP  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a1/
LA  - ru
ID  - VMUMM_2018_3_a1
ER  - 
%0 Journal Article
%A N. V. Kotlyarov
%T Existence of words over a three-letter alphabet not containing squares with errors of replacing
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 8-16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a1/
%G ru
%F VMUMM_2018_3_a1
N. V. Kotlyarov. Existence of words over a three-letter alphabet not containing squares with errors of replacing. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 8-16. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a1/