Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas dynamics.~II
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
For finite-difference approximation of the linearized system of the differential equations of viscous gas dynamics, the governing boundary conditions of the first kind are constructed to guarantee the acceleration of the process of reaching the steady state solution. Necessary estimates are presented for the rate of convergence in the case of zero boundary conditions as well as the calculation results for stabilization in the case of initial conditions with jumps of pressure and/or density.
@article{VMUMM_2018_3_a0,
author = {K. A. Zhukov and A. A. Kornev and A. V. Popov},
title = {Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas {dynamics.~II}},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--8},
publisher = {mathdoc},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a0/}
}
TY - JOUR AU - K. A. Zhukov AU - A. A. Kornev AU - A. V. Popov TI - Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas dynamics.~II JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 3 EP - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a0/ LA - ru ID - VMUMM_2018_3_a0 ER -
%0 Journal Article %A K. A. Zhukov %A A. A. Kornev %A A. V. Popov %T Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas dynamics.~II %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2018 %P 3-8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a0/ %G ru %F VMUMM_2018_3_a0
K. A. Zhukov; A. A. Kornev; A. V. Popov. Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas dynamics.~II. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a0/