Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas dynamics. II
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 3-8
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For finite-difference approximation of the linearized system of the differential equations of viscous gas dynamics, the governing boundary conditions of the first kind are constructed to guarantee the acceleration of the process of reaching the steady state solution. Necessary estimates are presented for the rate of convergence in the case of zero boundary conditions as well as the calculation results for stabilization in the case of initial conditions with jumps of pressure and/or density.
@article{VMUMM_2018_3_a0,
     author = {K. A. Zhukov and A. A. Kornev and A. V. Popov},
     title = {Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas {dynamics.~II}},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a0/}
}
TY  - JOUR
AU  - K. A. Zhukov
AU  - A. A. Kornev
AU  - A. V. Popov
TI  - Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas dynamics. II
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 3
EP  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a0/
LA  - ru
ID  - VMUMM_2018_3_a0
ER  - 
%0 Journal Article
%A K. A. Zhukov
%A A. A. Kornev
%A A. V. Popov
%T Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas dynamics. II
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 3-8
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a0/
%G ru
%F VMUMM_2018_3_a0
K. A. Zhukov; A. A. Kornev; A. V. Popov. Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas dynamics. II. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2018), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2018_3_a0/

[1] Zhukov K.A., Kornev A.A., Popov A.V., “Ob uskorenii protsessa vykhoda na statsionar reshenii linearizovannoi sistemy dinamiki vyazkogo gaza. I”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 1, 26–32

[2] Lebedev V.I., “Raznostnye analogi ortogonalnykh razlozhenii, osnovnykh differentsialnykh operatorov i nekotorykh kraevykh zadach matematicheskoi fiziki. I, II”, Zhurn. vychisl. matem. i matem. fiz., 3:4 (1964), 449–465 ; 4:4, 649–659

[3] Samarskii A.A., Nikolaev E.S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[4] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Chislennye metody, BINOM. Laboratoriya znanii, M., 2012 | MR

[5] Fursikov A.V., “Stabiliziruemost kvazilineinogo parabolicheskogo uravneniya s pomoschyu granichnogo upravleniya s obratnoi svyazyu”, Matem. sb., 192:4 (2001), 115–160 | DOI | Zbl

[6] Fursikov A.V., “Stabilizability of two-dimensional Navier–Stokes equations with help of boundary feedback control”, J. Math. Fluid Mech., 3 (2001), 259–301 | DOI | MR | Zbl

[7] Fursikov A.V., “Realnye protsessy i realizuemost metoda stabilizatsii sistemy Nave–Stoksa posredstvom upravleniya s obratnoi svyazyu s granitsy oblasti”, Nelineinye zadachi matematicheskoi fiziki i smezhnye voprosy, V chest akademika O.A. Ladyzhenskoi, v. 2, Mezhdunarodnaya matematicheskaya seriya, Tamara Rozhkovskaya, Novosibirsk, 2002, 127–164 | MR

[8] Chizhonkov E.V., “Numerical aspects of one stabilization method”, Russ. J. Numer. Anal. Math. Modelling, 18:5 (2003), 363–376 | DOI | MR | Zbl

[9] Chizhonkov E.V., “Ob operatorakh proektirovaniya dlya chislennoi stabilizatsii”, Vychisl. metody i programmir., 5 (2004), 161–169

[10] Vedernikova E.Yu., Kornev A.A., “K zadache o nagreve sterzhnya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 6, 10–15 | MR

[11] Kornev A.A., “Chislennoe modelirovanie protsessa asimptoticheskoi stabilizatsii po kraevym usloviyam kvazidvumernogo techeniya chetyrekhvikhrevoi struktury”, Matem. modelir., 29:11 (2017), 99–110

[12] Kornev A.A., “The structure and stabilization by boundary conditions of an annular flow of Kolmogorov type”, Russ. J. Numer. Anal. Math. Modelling, 32:4 (2017), 245–251 | DOI | MR | Zbl

[13] Ivanchikov A.A., Kornev A.A., Ozeritskii A.V., “O novom podkhode k resheniyu zadach asimptoticheskoi stabilizatsii”, Zhurn. vychisl. matem. i matem. fiz., 49:12 (2009), 2167–2181 | MR

[14] Kornev A.A., “Numerical aspects of a problem asymptotic stabilization by the right-hand side”, Russ. J. Numer. Anal. Math. Modelling, 23:4 (2008), 407–422 | DOI | MR | Zbl

[15] Zhukov K.A., Popov A.V., “Issledovanie ekonomichnoi raznostnoi skhemy dlya nestatsionarnogo dvizheniya vyazkogo slaboszhimaemogo gaza”, Zhurn. vychisl. matem. i matem. fiz., 45:4 (2005), 677–693 | MR | Zbl