Possibility of identification of friction coefficients in the hinge of controlled physical pendulum via amplitudes of stationary oscillations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 63-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A dynamic model of a controlled physical pendulum is considered. The control strategy is proposed to provide the orbital stability of steady oscillations with a program amplitude. The corresponding control torque is determined using the Pontryagin method of searching for the periodic solutions of near-Hamiltonian systems. An approach to identify the parameters of a model of friction in the hinge is proposed for the case of an active motor mode. This approach is based on the information on the integral characteristics of motion. The motion of the system under consideration is numerically simulated.
@article{VMUMM_2018_2_a9,
     author = {O. E. Vasiukova},
     title = {Possibility of identification of friction coefficients in the hinge of controlled physical pendulum via amplitudes of stationary oscillations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--67},
     year = {2018},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a9/}
}
TY  - JOUR
AU  - O. E. Vasiukova
TI  - Possibility of identification of friction coefficients in the hinge of controlled physical pendulum via amplitudes of stationary oscillations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 63
EP  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a9/
LA  - ru
ID  - VMUMM_2018_2_a9
ER  - 
%0 Journal Article
%A O. E. Vasiukova
%T Possibility of identification of friction coefficients in the hinge of controlled physical pendulum via amplitudes of stationary oscillations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 63-67
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a9/
%G ru
%F VMUMM_2018_2_a9
O. E. Vasiukova. Possibility of identification of friction coefficients in the hinge of controlled physical pendulum via amplitudes of stationary oscillations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a9/

[1] Bautin N.N., Leontovich E.A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990 | MR

[2] Armstrong-Helouvry B., Dupont P., De Wit C.C., “A survey of models, analysis tools and compensation methods for the control of machines with friction”, Automatica, 30:7 (1994), 1083–1138 | DOI | Zbl

[3] Kermani M.R., Patel R.V., Moallem M., “Friction identification and compensation in robotic manipulators”, IEEE Trans. Instrum. and Meas., 56:6 (2007), 2346–2353 | DOI

[4] Vakil M., Fotouhi R., Nikiforuk P.N., “Energy-based approach for friction identification of robotic joints”, Mechatronics, 21:3 (2011), 614–624 | DOI

[5] Iwatani M., Kikuuwe R., “An identification procedure for rate-dependency of friction in robotic joints with limited motion ranges”, Mechatronics, 36 (2016), 36–44 | DOI

[6] Klimina L.A., Lokshin B.Ya., “Ob odnom konstruktivnom metode poiska rotatsionnykh i avtokolebatelnykh rezhimov v avtonomnykh dinamicheskikh sistemakh”, Nelineinaya dinamika, 13:1 (2017), 25–40 | MR | Zbl

[7] Aleksandrov V.V., Lemak S.S., Parusnikov N.A., Lektsii po mekhanike upravlyaemykh sistem, Maks Press, M., 2012