Possibility of identification of friction coefficients in the hinge of controlled physical pendulum via amplitudes of stationary oscillations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 63-67

Voir la notice de l'article provenant de la source Math-Net.Ru

A dynamic model of a controlled physical pendulum is considered. The control strategy is proposed to provide the orbital stability of steady oscillations with a program amplitude. The corresponding control torque is determined using the Pontryagin method of searching for the periodic solutions of near-Hamiltonian systems. An approach to identify the parameters of a model of friction in the hinge is proposed for the case of an active motor mode. This approach is based on the information on the integral characteristics of motion. The motion of the system under consideration is numerically simulated.
@article{VMUMM_2018_2_a9,
     author = {O. E. Vasiukova},
     title = {Possibility of identification of friction coefficients in the hinge of controlled physical pendulum via amplitudes of stationary oscillations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--67},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a9/}
}
TY  - JOUR
AU  - O. E. Vasiukova
TI  - Possibility of identification of friction coefficients in the hinge of controlled physical pendulum via amplitudes of stationary oscillations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 63
EP  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a9/
LA  - ru
ID  - VMUMM_2018_2_a9
ER  - 
%0 Journal Article
%A O. E. Vasiukova
%T Possibility of identification of friction coefficients in the hinge of controlled physical pendulum via amplitudes of stationary oscillations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 63-67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a9/
%G ru
%F VMUMM_2018_2_a9
O. E. Vasiukova. Possibility of identification of friction coefficients in the hinge of controlled physical pendulum via amplitudes of stationary oscillations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a9/