@article{VMUMM_2018_2_a8,
author = {A. V. Khokhlov},
title = {A nonlinear {Maxwell-type} model for rheonomous materials: stability under symmetric cyclic loadings},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {59--63},
year = {2018},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a8/}
}
TY - JOUR AU - A. V. Khokhlov TI - A nonlinear Maxwell-type model for rheonomous materials: stability under symmetric cyclic loadings JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 59 EP - 63 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a8/ LA - ru ID - VMUMM_2018_2_a8 ER -
A. V. Khokhlov. A nonlinear Maxwell-type model for rheonomous materials: stability under symmetric cyclic loadings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 59-63. http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a8/
[1] Moskvitin V.V., Tsiklicheskoe nagruzhenie elementov konstruktsii, Nauka, M., 1981 | MR
[2] Makhutov N.A., Burak M.I., Gadenin M.M. i dr., Mekhanika malotsiklovogo razrusheniya, Nauka, M., 1986
[3] Kang G., “Ratchetting: recent progresses in phenomenon observation, constitutive modeling and application”, Int. J. Fatigue, 30 (2008), 1448–1472 | DOI
[4] Fuschi P., Pisano A.A., Weichert D., Direct Methods for Limit and Shakedown Analysis of Structures: Advanced Computational Algorithms and Material Modelling, Springer, Berlin, 2015
[5] Khokhlov A.V., “Svoistva nelineinoi modeli vyazkouprugoplastichnosti tipa Maksvella s dvumya materialnymi funktsiyami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 6, 36–41 | Zbl
[6] Khokhlov A.V., “Krivye dlitelnoi prochnosti nelineinoi modeli vyazkouprugoplastichnosti tipa Maksvella i pravilo summirovaniya povrezhdennosti pri stupenchatykh nagruzheniyakh”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2016, no. 3, 524–543 | DOI
[7] Khokhlov A.V., “Svoistva semeistva krivykh nagruzheniya s postoyannoi skorostyu, porozhdaemykh nelineinoi modelyu vyazkouprugoplastichnosti tipa Maksvella”, Mashinostroenie i inzhenernoe obrazovanie, 2017, no. 1, 57–71
[8] Khokhlov A.V., “Nelineinaya model vyazkouprugoplastichnosti tipa Maksvella: modelirovanie vliyaniya temperatury na krivye deformirovaniya, relaksatsii i polzuchesti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:1 (2017), 160–179 | DOI
[9] Khokhlov A.V., “Nelineinaya model vyazkouprugoplastichnosti tipa Maksvella: skorost nakopleniya plasticheskoi deformatsii pri tsiklicheskikh nagruzheniyakh”, Deformatsiya i razrushenie materialov, 2017, no. 7, 7–19
[10] Khokhlov A.V., “Identifikatsiya nelineinoi modeli uprugovyazkoplastichnosti tipa Maksvella po krivym polzuchesti s nachalnoi stadiei nagruzheniya. Ch. 2. Metodiki”, Deformatsiya i razrushenie materialov, 2017, no. 10, 2–9
[11] Kang G., Ding J., Liu Y., “Summary on Uniaxial Ratchetting of 6061-T6 Aluminium Alloy”, Aluminium Alloys, Theory and Applications, 2011, 199–216, InTech | DOI
[12] Arutyunyan R.A., Kamentseva Z.P., “Uprochnenie stareyuschikh splavov”, Izv. AN SSSR. Mekhan. tverdogo tela, 1976, no. 4, 128–137
[13] Arutyunyan R.A., Vakulenko A.A., Umanskii S.E., “O tsiklicheskom nagruzhenii plasticheskoi sredy so stareniem”, Izv. AN SSSR. Mekhan. tverdogo tela, 1979, no. 2, 79–83 | MR