A nonlinear Maxwell-type model for rheonomous materials: stability under symmetric cyclic loadings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 59-63
Voir la notice de l'article provenant de la source Math-Net.Ru
The analytic study of the nonlinear Maxwell-type constitutive relation with two arbitrary material functions is continued to reveal its capabilities, applicability scope, and techniques of identification and tuning. General properties of the model response to an arbitrary periodic loading program are considered. A criteria for periodicity of strain evolution (and for the lack of ratcheting) is obtained. A condition is derived for simulation of cyclic stability under symmetric cyclic loadings, i.e., the effect of hysteresis loops stabilization after a number of cycles and convergence to a closed one. The condition is proved to depend only on a one material function and to be consistent with tension compression asymmetry simulation.
@article{VMUMM_2018_2_a8,
author = {A. V. Khokhlov},
title = {A nonlinear {Maxwell-type} model for rheonomous materials: stability under symmetric cyclic loadings},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {59--63},
publisher = {mathdoc},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a8/}
}
TY - JOUR AU - A. V. Khokhlov TI - A nonlinear Maxwell-type model for rheonomous materials: stability under symmetric cyclic loadings JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 59 EP - 63 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a8/ LA - ru ID - VMUMM_2018_2_a8 ER -
%0 Journal Article %A A. V. Khokhlov %T A nonlinear Maxwell-type model for rheonomous materials: stability under symmetric cyclic loadings %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2018 %P 59-63 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a8/ %G ru %F VMUMM_2018_2_a8
A. V. Khokhlov. A nonlinear Maxwell-type model for rheonomous materials: stability under symmetric cyclic loadings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 59-63. http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a8/