A minimax stabilization algorithm for third-order linear systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 47-52
Cet article a éte moissonné depuis la source Math-Net.Ru
The necessary optimality conditions are used to solve the problem of minimax stabilization for linear controlled systems of third order when the Kalman conditions are not valid.
@article{VMUMM_2018_2_a5,
author = {V. V. Aleksandrov and H. A. Ramirez Gutierrez},
title = {A minimax stabilization algorithm for third-order linear systems},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {47--52},
year = {2018},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a5/}
}
TY - JOUR AU - V. V. Aleksandrov AU - H. A. Ramirez Gutierrez TI - A minimax stabilization algorithm for third-order linear systems JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 47 EP - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a5/ LA - ru ID - VMUMM_2018_2_a5 ER -
V. V. Aleksandrov; H. A. Ramirez Gutierrez. A minimax stabilization algorithm for third-order linear systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 47-52. http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a5/
[1] Alexandrov V.V., Bugrov D.I., Corona Morales G., Tikhonova K.V., “Tent-method application for minmax stabilization and maxmin testing”, IMA J. Math. Control and Inform., 34 (2017), 15–25 | MR
[2] Shilnikov L.P., Shilnikov A.L., Turaev D.V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, v. 2, M.–Izhevsk, 2009
[3] Boltyanskii V.G., “Metod shatrov v teorii ekstremalnykh zadach”, Uspekhi matem. nauk, KhKhKh:3(183) (1975), 3–55