A minimax stabilization algorithm for third-order linear systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 47-52

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary optimality conditions are used to solve the problem of minimax stabilization for linear controlled systems of third order when the Kalman conditions are not valid.
@article{VMUMM_2018_2_a5,
     author = {V. V. Aleksandrov and H. A. Ramirez Gutierrez},
     title = {A minimax stabilization algorithm for third-order linear systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {47--52},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a5/}
}
TY  - JOUR
AU  - V. V. Aleksandrov
AU  - H. A. Ramirez Gutierrez
TI  - A minimax stabilization algorithm for third-order linear systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 47
EP  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a5/
LA  - ru
ID  - VMUMM_2018_2_a5
ER  - 
%0 Journal Article
%A V. V. Aleksandrov
%A H. A. Ramirez Gutierrez
%T A minimax stabilization algorithm for third-order linear systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 47-52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a5/
%G ru
%F VMUMM_2018_2_a5
V. V. Aleksandrov; H. A. Ramirez Gutierrez. A minimax stabilization algorithm for third-order linear systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 47-52. http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a5/