A minimax stabilization algorithm for third-order linear systems
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 47-52
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The necessary optimality conditions are used to solve the problem of minimax stabilization for linear controlled systems of third order when the Kalman conditions are not valid.
			
            
            
            
          
        
      @article{VMUMM_2018_2_a5,
     author = {V. V. Aleksandrov and H. A. Ramirez Gutierrez},
     title = {A minimax stabilization algorithm for third-order linear systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {47--52},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a5/}
}
                      
                      
                    TY - JOUR AU - V. V. Aleksandrov AU - H. A. Ramirez Gutierrez TI - A minimax stabilization algorithm for third-order linear systems JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 47 EP - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a5/ LA - ru ID - VMUMM_2018_2_a5 ER -
%0 Journal Article %A V. V. Aleksandrov %A H. A. Ramirez Gutierrez %T A minimax stabilization algorithm for third-order linear systems %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2018 %P 47-52 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a5/ %G ru %F VMUMM_2018_2_a5
V. V. Aleksandrov; H. A. Ramirez Gutierrez. A minimax stabilization algorithm for third-order linear systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 47-52. http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a5/
