@article{VMUMM_2018_2_a2,
author = {I. F. Kobtsev},
title = {The geodesic flow on a~two-dimensional ellipsoid in the field of an elastic force. {Topological} classification of solutions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {27--33},
year = {2018},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a2/}
}
TY - JOUR AU - I. F. Kobtsev TI - The geodesic flow on a two-dimensional ellipsoid in the field of an elastic force. Topological classification of solutions JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 27 EP - 33 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a2/ LA - ru ID - VMUMM_2018_2_a2 ER -
%0 Journal Article %A I. F. Kobtsev %T The geodesic flow on a two-dimensional ellipsoid in the field of an elastic force. Topological classification of solutions %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2018 %P 27-33 %N 2 %U http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a2/ %G ru %F VMUMM_2018_2_a2
I. F. Kobtsev. The geodesic flow on a two-dimensional ellipsoid in the field of an elastic force. Topological classification of solutions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 27-33. http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a2/
[1] Yakobi K., Lektsii po dinamike, Per. s nem., Gl. red. obschetekhn. lit-ry, M.–L., 1936
[2] Kozlov V.V., “Nekotorye integriruemye obobscheniya zadachi Yakobi o geodezicheskikh na ellipsoide”, Prikl. matem. i mekhan., 59:1 (1995), 3–9 | MR | Zbl
[3] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR
[4] Fomenko A.T., “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[5] Fomenko A.T., “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR Izvestiya, 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl
[6] Fomenko A.T., Tsishang Kh., “O topologii trekhmernykh mnogoobrazii, voznikayuschikh v gamiltonovoi mekhanike”, Dokl. AN SSSR, 294:2 (1987), 283–287 | MR | Zbl
[7] Fomenko A.T., Kudryavtseva E.A., “Each finite group is a symmetry group of some map (“atom”-bifurcation)”, Moscow Univ. Math. Bull., 68:3 (2013), 148–155 | DOI | MR | MR | Zbl
[8] Kharlamov M.P., “Topologicheskii analiz i bulevy funktsii. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinamika, 6:4 (2010), 769–805
[9] Nikolaenko S. S., “Topologicheskaya klassifikatsiya integriruemogo sluchaya Goryacheva v dinamike tverdogo tela”, Matem. sb., 207:1 (2015), 123–150 | DOI | MR
[10] Fomenko A.T., Nikolaenko S.S., “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. and Phys., 87 (2015), 115–133 | DOI | MR | Zbl