@article{VMUMM_2018_2_a1,
author = {M. K. Potapov and B. V. Simonov},
title = {Estimates for mixed moduli of smoothness in $L_q$ metric via mixed moduli of smoothness in $L_1$ metric},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {12--26},
year = {2018},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a1/}
}
TY - JOUR AU - M. K. Potapov AU - B. V. Simonov TI - Estimates for mixed moduli of smoothness in $L_q$ metric via mixed moduli of smoothness in $L_1$ metric JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 12 EP - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a1/ LA - ru ID - VMUMM_2018_2_a1 ER -
%0 Journal Article %A M. K. Potapov %A B. V. Simonov %T Estimates for mixed moduli of smoothness in $L_q$ metric via mixed moduli of smoothness in $L_1$ metric %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2018 %P 12-26 %N 2 %U http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a1/ %G ru %F VMUMM_2018_2_a1
M. K. Potapov; B. V. Simonov. Estimates for mixed moduli of smoothness in $L_q$ metric via mixed moduli of smoothness in $L_1$ metric. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 12-26. http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a1/
[1] Nikolskii S.M., “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zhurn., 4:6 (1963), 1342–1364
[2] Bakhvalov N.S., “Teoremy vlozheniya dlya klassov funktsii s neskolkimi ogranichennymi proizvodnymi”, Vestn. Mosk. un-ta. Matem. Mekhan., 1963, no. 3, 7–16 | Zbl
[3] Potapov M.K., Simonov B.V., Tikhonov S.Yu., Drobnye moduli gladkosti, Maks Press, M., 2016 | MR
[4] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR
[5] Potapov M., Simonov B., Tikhonov S., “Mixed moduli of smoothness in $L_p, 1 p \infty$. A survey”, Surv. Approxim. Theory, 8 (2013), 1–57 | MR | Zbl
[6] Potapov M.K., Simonov B.V., Tikhonov S.Yu., “Constructive characteristics of mixed moduli of smoothness of positive orders”, Proc. 8th Congress of the International Society for Analysis, its Applications, and Computation (August 22–27, 2011), v. 2, People's Friendship University of Russia, M., 2012, 314–325 | MR | Zbl
[7] Potapov M.K., “O priblizhenii uglom”, Proc. Conf. Constructive Theory of Functions, Izd-vo AN Vengrii, 1971, 371–399
[8] Potapov M.K., “Vlozhenie klassov funktsii s dominiruyuschim smeshannym modulem gladkosti”, Tr. Matem. in-ta AN SSSR, 131, 1974, 199–210 | Zbl
[9] Bari N.K., Trigonometricheskie ryady, Izd-vo fiz.-mat. lit., M., 1961 | MR
[10] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965 | MR
[11] Ulyanov P.L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81(123):1 (1970), 104–131 | Zbl
[12] Taberski R., “Differences, moduli and derivatives of fractional orders”, Comment. Math. Prace Mat., 19:2 (1976/77), 389–400 | MR
[13] Simonov B.V., Tikhonov S.Yu., “Teoremy vlozheniya v konstruktivnoi teorii priblizhenii”, Matem. sb., 199:9 (2008), 107–148 | DOI | MR | Zbl
[14] Potapov M.K., “Ob odnoi teoreme vlozheniya”, Mathematica, 14(37):1 (1972), 123–146