A method to study the Cauchy problem for an arbitrary order singularly perturbed linear homogeneous differential equation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 3-12

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a sequence converging to the solution to the Cauchy problem for a singularly perturbed, linear, homogeneous differential equation of any order. This sequence is asymptotic in the following sense: the distance (with respect to the norm of the space of continuous functions) between its $n$th element and the solution to the problem is proportional to the $(n+1)$th power of the perturbation parameter.
@article{VMUMM_2018_2_a0,
     author = {E. E. Bukzhalev},
     title = {A method to study the {Cauchy} problem for an arbitrary order singularly perturbed linear homogeneous differential equation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a0/}
}
TY  - JOUR
AU  - E. E. Bukzhalev
TI  - A method to study the Cauchy problem for an arbitrary order singularly perturbed linear homogeneous differential equation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 3
EP  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a0/
LA  - ru
ID  - VMUMM_2018_2_a0
ER  - 
%0 Journal Article
%A E. E. Bukzhalev
%T A method to study the Cauchy problem for an arbitrary order singularly perturbed linear homogeneous differential equation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 3-12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a0/
%G ru
%F VMUMM_2018_2_a0
E. E. Bukzhalev. A method to study the Cauchy problem for an arbitrary order singularly perturbed linear homogeneous differential equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 3-12. http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a0/