A method to study the Cauchy problem for an arbitrary order singularly perturbed linear homogeneous differential equation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a sequence converging to the solution to the Cauchy problem for a singularly perturbed, linear, homogeneous differential equation of any order. This sequence is asymptotic in the following sense: the distance (with respect to the norm of the space of continuous functions) between its $n$th element and the solution to the problem is proportional to the $(n+1)$th power of the perturbation parameter.
@article{VMUMM_2018_2_a0,
     author = {E. E. Bukzhalev},
     title = {A method to study the {Cauchy} problem for an arbitrary order singularly perturbed linear homogeneous differential equation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--12},
     year = {2018},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a0/}
}
TY  - JOUR
AU  - E. E. Bukzhalev
TI  - A method to study the Cauchy problem for an arbitrary order singularly perturbed linear homogeneous differential equation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 3
EP  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a0/
LA  - ru
ID  - VMUMM_2018_2_a0
ER  - 
%0 Journal Article
%A E. E. Bukzhalev
%T A method to study the Cauchy problem for an arbitrary order singularly perturbed linear homogeneous differential equation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 3-12
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a0/
%G ru
%F VMUMM_2018_2_a0
E. E. Bukzhalev. A method to study the Cauchy problem for an arbitrary order singularly perturbed linear homogeneous differential equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2018), pp. 3-12. http://geodesic.mathdoc.fr/item/VMUMM_2018_2_a0/

[1] Demidovich B.P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka. Gl. red. fiz.-mat. lit-ry, M., 1967 | MR

[2] Tikhonov A.N., Vasileva A.B., Sveshnikov A.G., Differentsialnye uravneniya, Kurs vysshei matematiki i matematicheskoi fiziki, Nauka. Fizmatlit, M., 1998 | MR

[3] Kopachevskii N.D., Smolich V.P., Vvedenie v asimptoticheskie metody, Spetsialnyi kurs lektsii, Tavrich. nats. un-t, Simferopol, 2009

[4] Vasileva A.B., Butuzov V.F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka. Gl. red. fiz.-mat. lit-ry, M., 1973 | MR

[5] Vasileva A.B., Butuzov V.F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Aktualnye voprosy prikladnoi i vychislitelnoi matematiki, Vysshaya shkola, M., 1990 | MR

[6] Tyrtyshnikov E.E., Metody chislennogo analiz, Universitetskii uchebnik. Prikladnaya matematika i informatika, ITs “Akademiya”, M., 2007

[7] Markushevich A.I., Teoriya analiticheskikh funktsii, v. II, Dalneishee postroenie teorii, 2-e izd., ispr. i dop., Nauka. Gl. red. fiz.-mat. lit-ry, M., 1968 | MR