Semicontinuity of majorants and minorants of Lyapunov exponents as functions of a complex parameter
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2018), pp. 63-67
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A parametric family of linear differential systems with continuous coefficients bounded on the semi-axis and analytically dependent on a complex parameter is considered. It is established that the majorant (minorant) of the Lyapunov exponent considered as a function of the parameter is upper (lower) semi-continuous.
			
            
            
            
          
        
      @article{VMUMM_2018_1_a9,
     author = {A. N. Vetokhin},
     title = {Semicontinuity of majorants and minorants of {Lyapunov} exponents as functions of a complex parameter},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--67},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a9/}
}
                      
                      
                    TY - JOUR AU - A. N. Vetokhin TI - Semicontinuity of majorants and minorants of Lyapunov exponents as functions of a complex parameter JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 63 EP - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a9/ LA - ru ID - VMUMM_2018_1_a9 ER -
%0 Journal Article %A A. N. Vetokhin %T Semicontinuity of majorants and minorants of Lyapunov exponents as functions of a complex parameter %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2018 %P 63-67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a9/ %G ru %F VMUMM_2018_1_a9
A. N. Vetokhin. Semicontinuity of majorants and minorants of Lyapunov exponents as functions of a complex parameter. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2018), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a9/