Semicontinuity of majorants and minorants of Lyapunov exponents as functions of a complex parameter
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2018), pp. 63-67
Cet article a éte moissonné depuis la source Math-Net.Ru
A parametric family of linear differential systems with continuous coefficients bounded on the semi-axis and analytically dependent on a complex parameter is considered. It is established that the majorant (minorant) of the Lyapunov exponent considered as a function of the parameter is upper (lower) semi-continuous.
@article{VMUMM_2018_1_a9,
author = {A. N. Vetokhin},
title = {Semicontinuity of majorants and minorants of {Lyapunov} exponents as functions of a complex parameter},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {63--67},
year = {2018},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a9/}
}
TY - JOUR AU - A. N. Vetokhin TI - Semicontinuity of majorants and minorants of Lyapunov exponents as functions of a complex parameter JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 63 EP - 67 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a9/ LA - ru ID - VMUMM_2018_1_a9 ER -
A. N. Vetokhin. Semicontinuity of majorants and minorants of Lyapunov exponents as functions of a complex parameter. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2018), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a9/
[1] Millionschikov V.M., “Berovskie klassy funktsii i pokazateli Lyapunova. I”, Differents. uravneniya, 16:8 (1980), 1408–1416 | MR
[2] Vetokhin A.N., “K zadache o minorantakh pokazatelei Lyapunova”, Differents. uravneniya, 49:7 (2013), 950–952 | MR | Zbl
[3] Millionschikov V.M., “O mazhorantakh i minorantakh ekstraordinarnykh pokazatelei Lyapunova”, Differents. uravneniya, 31:9 (1995), 1601
[4] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR