Steiner mapping of three points on Euclidean plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2018), pp. 20-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For Euclidean plane $\mathbb{C}$ we consider the Steiner mapping associating any three points $a, b, c$ with their median $s$ and the corresponding operator $P_D$ of metric projection of the space $l_1^3(\mathbb{C})$ onto its diagonal subspace $D=\{(x, x, x) \colon x \in \mathbb{C}\}$, $P_D(a, b, c)=(s, s, s) \colon s$. The exact value of the linearity coefficient of $P_D$ is calculated.
@article{VMUMM_2018_1_a2,
     author = {K. V. Chesnokova},
     title = {Steiner mapping of three points on {Euclidean} plane},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {20--26},
     year = {2018},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a2/}
}
TY  - JOUR
AU  - K. V. Chesnokova
TI  - Steiner mapping of three points on Euclidean plane
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 20
EP  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a2/
LA  - ru
ID  - VMUMM_2018_1_a2
ER  - 
%0 Journal Article
%A K. V. Chesnokova
%T Steiner mapping of three points on Euclidean plane
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 20-26
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a2/
%G ru
%F VMUMM_2018_1_a2
K. V. Chesnokova. Steiner mapping of three points on Euclidean plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2018), pp. 20-26. http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a2/

[1] Veselý L., “Generalized centers of finite sets in Banach spaces”, Acta math. univ. Comenianae, 66:1 (1997), 83–115 | MR | Zbl

[2] Kahane J.-P., “Best approximation in $L^1(T)$”, Bull. Amer. Math. Soc., 80:5 (1974), 788–804 | DOI | MR | Zbl

[3] Borodin P.A., “Koeffitsient lineinosti operatora metricheskogo proektirovaniya na chebyshëvskoe podprostranstvo”, Matem. zametki, 85:2 (2009), 180–188 | DOI | Zbl

[4] Chesnokova K.V., “Ob otobrazhenii, sopostavlyayuschem troike tochek banakhova prostranstva ikh tochku Shteinera”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 2, 40–44 | MR | Zbl

[5] Kurant R., Robbins G., Chto takoe matematika, RKhD, M.–Izhevsk, 2001