Steiner mapping of three points on Euclidean plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2018), pp. 20-26
Voir la notice de l'article provenant de la source Math-Net.Ru
For Euclidean plane $\mathbb{C}$ we consider the Steiner mapping associating any three points $a, b, c$ with their median $s$
and the corresponding operator $P_D$ of metric projection of the space $l_1^3(\mathbb{C})$ onto its diagonal subspace
$D=\{(x, x, x) \colon x \in \mathbb{C}\}$, $P_D(a, b, c)=(s, s, s) \colon s$.
The exact value of the linearity coefficient of $P_D$ is calculated.
@article{VMUMM_2018_1_a2,
author = {K. V. Chesnokova},
title = {Steiner mapping of three points on {Euclidean} plane},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {20--26},
publisher = {mathdoc},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a2/}
}
K. V. Chesnokova. Steiner mapping of three points on Euclidean plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2018), pp. 20-26. http://geodesic.mathdoc.fr/item/VMUMM_2018_1_a2/