A cubature formula for periodic functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 59-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New many-dimensional cubature formulas are obtained for periodic functions with the use of the Chinese remainder theorem. This allows us to take into account the “equality” of all variables and the “uniformness” of distribution of nodes in numerical integration formulas.
@article{VMUMM_2017_6_a9,
     author = {V. N. Chubarikov and M. L. Sharapova},
     title = {A cubature formula for periodic functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {59--62},
     year = {2017},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a9/}
}
TY  - JOUR
AU  - V. N. Chubarikov
AU  - M. L. Sharapova
TI  - A cubature formula for periodic functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 59
EP  - 62
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a9/
LA  - ru
ID  - VMUMM_2017_6_a9
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%A M. L. Sharapova
%T A cubature formula for periodic functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 59-62
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a9/
%G ru
%F VMUMM_2017_6_a9
V. N. Chubarikov; M. L. Sharapova. A cubature formula for periodic functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 59-62. http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a9/

[1] Chubarikov V.N., Sharapova M.L., “Ob analoge kvadratury Gaussa dlya periodicheskikh funktsii”, Vestn. kibernetiki, 28:2 (2017), 60–65

[2] Babenko K.I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[3] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Chislennye metody, Ucheb. posobie, Nauka, M., 1987 | MR

[4] Korobov N.M., Teoretiko-chislovye metody v priblizhennom analize, MTsNMO, M., 2004 | MR

[5] Hua L.-K., Selected Papers, Springer-Verlag, N.Y., 1983 | MR | Zbl

[6] Wang Y., Selected Papers, Bejing, 1999

[7] Voronin S.M., Izbrannye trudy, Izd-vo MGTU im. N. E. Baumana, M., 2006

[8] Arkhipov G.I., Izbrannye trudy, Izd-vo Orlov. gos. un-ta, Orel, 2013 | MR

[9] Arkhipov G.I., Chubarikov V.N., Karatsuba A.A., Trigonometric sums in number theory and analysis, De Gruyter expositions in mathematics, 39, Berlin–N.Y., 2004 | MR | Zbl

[10] Chubarikov V.N., “Pokazatel skhodimosti srednego znacheniya polnykh ratsionalnykh arifmeticheskikh summ”, Chebyshëvskii sbornik, 16:4(56) (2015), 303–318 | MR

[11] Chubarikov V.N., “Arifmeticheskie summy ot znachenii polinoma”, Dokl. RAN, 466:2 (2016), 152–153 | DOI | Zbl

[12] Chubarikov V.N., “Polnye ratsionalnye arifmeticheskie summy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 1, 60–61

[13] Vinogradov I.M., Metod trigonometricheskikh summ v teorii chisel, 2-e izd., Nauka, M., 1980 | MR

[14] Krylov A.N., Lektsii o priblizhennykh vychisleniyakh, Gostekhizdat, M., 1950