Sturmian words and uncountable set of almost nilpotent varieties of quadratic growth
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 55-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For any infinite Sturmian word we define an almost nilpotent variety of quadratic growth. Thus, an uncountable set of different almost nilpotent varieties is constructed.
@article{VMUMM_2017_6_a8,
     author = {S. P. Mishchenko and N. P. Panov},
     title = {Sturmian words and uncountable set of almost nilpotent varieties of quadratic growth},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--59},
     year = {2017},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a8/}
}
TY  - JOUR
AU  - S. P. Mishchenko
AU  - N. P. Panov
TI  - Sturmian words and uncountable set of almost nilpotent varieties of quadratic growth
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 55
EP  - 59
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a8/
LA  - ru
ID  - VMUMM_2017_6_a8
ER  - 
%0 Journal Article
%A S. P. Mishchenko
%A N. P. Panov
%T Sturmian words and uncountable set of almost nilpotent varieties of quadratic growth
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 55-59
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a8/
%G ru
%F VMUMM_2017_6_a8
S. P. Mishchenko; N. P. Panov. Sturmian words and uncountable set of almost nilpotent varieties of quadratic growth. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 55-59. http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a8/

[1] Giambruno A., Zaicev M., Polynomial identities and asymptotic methods, Math. Surv. and Monogr., 122, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[2] Frolova Yu.Yu., Shulezhko O.V., “Pochti nilpotentnye mnogoobraziya algebr Leibnitsa”, Prikl. diskretn. matem. Tomsk, 2015, no. 2(28), 30–36

[3] Mishchenko S., Valenti A., “On almost nilpotent varieties of subexponential growth”, J. Algebra, 423 (2015), 902–915 | DOI | MR | Zbl

[4] Chang N.T.K., Frolova Yu.Yu., “Pochti nilpotentnye kommutativnye metabelevy mnogoobraziya, rost kotorykh ne vyshe eksponentsialnogo”, Mezhdunar. konf. “Maltsevskie chteniya”, tez. dokl., 2014, 119

[5] Mischenko S.P., Shulezhko O.V., “Opisanie pochti nilpotentnykh antikommutativnykh metabelevykh mnogoobrazii s podeksponentsialnym rostom”, Mezhdunar. konf. “Maltsevskie chteniya”, tez. dokl., IM SO RAN, Novosibirsk, 2014, 110

[6] Mishchenko S., Valenti A., “An almost nilpotent variety of exponent 2”, Isr. J. Math., 199 (2014), 241–258 | DOI | MR

[7] Shulezhko O.V., “Novye svoistva pochti nilpotentnogo mnogoobraziya eksponenty dva”, Izv. Saratov. un-ta. Novaya seriya. Matem. Mekhan. Inform., 14:3 (2014), 316–320 | Zbl

[8] Mischenko S.P., “Pochti nilpotentnye mnogoobraziya drobnoi eksponenty suschestvuyut”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 3, 42–46

[9] Mischenko S.P., Shulezhko O.V., “Pochti nilpotentnye mnogoobraziya lyuboi tseloi eksponenty”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 2, 53–57

[10] Shulezhko O.V., “O pochti nilpotentnykh mnogoobraziyakh v razlichnykh klassakh lineinykh algebr”, Chebyshëvskii sbornik, 16:1 (2015), 67–88 | MR

[11] Mischenko S.P., “Beskonechnye periodicheskie slova i pochti nilpotentnye mnogoobraziya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 4, 62–66

[12] Mischenko S.P., “Metabelevy pochti nilpotentnye mnogoobraziya polinomialnogo rosta”, Mat-ly mezhdunar. konf. po algebre, analizu i geometrii, Kazan. un-t; Izd-vo Akademii nauk TR, Kazan, 2016, 247–248

[13] Lothaire M., Algebraic combinatorics on words, Cambridge University Press, Camdridge, 2002 | MR | Zbl

[14] Vuillon L., “A characterization of Sturmian words by return words”, Eur. J. Comb., 22:2 (2001), 263–275 | DOI | MR | Zbl

[15] Mischenko S.P., Verëvkin A.B., “O mnogoobraziyakh s tozhdestvami odnoporozhdennoi svobodnoi metabelevoi algebry”, Chebyshëvskii sbornik, 17:2(58) (2016), 21–55 | MR

[16] Zaitsev M.V., Mischenko S.P., “O kodline mnogoobrazii lineinykh algebr”, Matem. zametki, 79:4 (2006), 553–559 | DOI | Zbl