Integral boundary layer relations in the theory of wave flows for capillary liquid films
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 38-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalized method of deriving the model equations is considered for wave flow regimes in falling liquid films. The viscous liquid equations are used on the basis of integral boundary layer relations with weight functions. A family of systems of evolution differential equations is proposed. The integer parameter $n$ of these systems specifies the number of a weight function. The case $n=0$ corresponds to the classical IBL model. The case $n\geq 1$ corresponds to its modifications called the WIBL models. The numerical results obtained in the linear and nonlinear approximations for $n=0,1,2$ are discussed. The numerical solutions to the original hydrodynamic differential equations are compared with experimental data. This comparison leads us to the following conclusions: as a rule, the most exact solutions are obtained for $n=0$ in the case of film flows on vertical and inclined solid surfaces and the accuracy of solutions decreases with increasing $n$. Hence, the classical IBL model has an advantage over the WIBL models.
@article{VMUMM_2017_6_a6,
     author = {V. Ya. Shkadov and A. N. Beloglazkin},
     title = {Integral boundary layer relations in the theory of wave flows for capillary liquid films},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {38--50},
     year = {2017},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a6/}
}
TY  - JOUR
AU  - V. Ya. Shkadov
AU  - A. N. Beloglazkin
TI  - Integral boundary layer relations in the theory of wave flows for capillary liquid films
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 38
EP  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a6/
LA  - ru
ID  - VMUMM_2017_6_a6
ER  - 
%0 Journal Article
%A V. Ya. Shkadov
%A A. N. Beloglazkin
%T Integral boundary layer relations in the theory of wave flows for capillary liquid films
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 38-50
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a6/
%G ru
%F VMUMM_2017_6_a6
V. Ya. Shkadov; A. N. Beloglazkin. Integral boundary layer relations in the theory of wave flows for capillary liquid films. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 38-50. http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a6/

[1] Kapitsa P.L., Kapitsa S.P., “Volnovye techeniya tonkikh sloev vyazkoi zhidkosti”, Zhurn. eksperim. i teor. fiz., 19:2 (1949), 105–120

[2] Kapitsa P.L., “Volnovye techeniya tonkikh sloev vyazkoi zhidkosti”, Zhurn. eksperim. i teor. fiz., 18:1 (1948), 3–28

[3] Shkadov V.Ya., “Volnovye rezhimy techeniya tonkogo sloya vyazkoi zhidkosti pod deistviem sily tyazhesti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1967, no. 1, 43–51

[4] Kholpanov L.P., Shkadov V.Ya., Gidrodinamika i teploobmen s poverkhnostyu razdela, Nauka, M., 1990

[5] Alekseenko S.V., Nakoryakov V.E., Pokusaev B.G., Volnovoe techenie plenok zhidkosti, Nauka, Sib. otd-e, Novosibirsk, 1992

[6] Chang H.-C., Demekhin E.A., Complex Wave Dynamics on Thin Films, Elsevier, Amsterdam, 2002 | MR

[7] Nepomnyashchy A.A., Velarde M.G., Colinet P., Interfacial phenomena and convection, Chapman Hall/CRC, Boca Raton, 2002 | MR | Zbl

[8] Kalliadasis S., Ruyer-Quil C., Scheid B., Velarde M.G., Falling Liquid Films, Springer, London, 2011 | MR

[9] Zeitunyan R.Kh., “Problema termokapillyarnoi neustoichivosti Benara–Marangoni”, Uspekhi fiz. nauk, 168:3 (1998), 259–286 | DOI

[10] Shkadov V.Y., “Hydrodynamics of slopped falling films”, Interfacial phenomena and the Marangoni effect, eds. M. Velarde, R.K. Zeytounian, Springer-Verlag, New York, 2002, 191–224 | Zbl

[11] Shkadov V.Ya., Demekhin E.A., “Volnovye dvizheniya plenok zhidkosti na vertikalnoi poverkhnosti (teoriya dlya istolkovaniya eksperimentov)”, Uspekhi mekhaniki, 4:2 (2006), 3–65

[12] Shkadov V.Y., Sisoev G.M., “Wavy falling films: theory and computations instead of physical experiment”, IUTAM Symposium on Nonlinear Waves in Multi-Phase Flow (Notre Dame, USA), Fluid Mechanics and Its Applications, 57, ed. H.-C. Chang, Kluwer, Dordrecht, 2000, 1–10 | DOI | MR

[13] Shkadov V.Ya., Velarde G.M., Shkadova V.P., “Falling films and the Marangoni effect”, Phys. Rev. E, 69 (2004), 056310, 15 pp. | DOI | MR

[14] Trifonov Y.Y., “Stability and bifurcations of the wavy film flow down a vertical plate: the results of integral approaches and full-scale computations”, Fluid Dyn. Res., 44 (2012), 031418, 19 pp. | DOI | MR | Zbl

[15] Kochin N.E., Kibel I.A., Roze N.V., Teoreticheskaya gidromekhanika, v. II, GIFML, M., 1963

[16] Shkadov V.Ya., “Dvukhparametricheskaya model volnovykh rezhimov techeniya plenok vyazkoi zhidkosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 4, 56–61 | MR

[17] Shkadov V.Ya., “Uedinennye volny v sloe vyazkoi zhidkosti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1977, no. 1, 63–66 | Zbl

[18] Ruyer-Quil C., Manneville P., “Improved modeling of flows down inclined planes”, Eur. Phys. J. B, 15 (2000), 357–369 | DOI

[19] Aktershev S.P., Alekseenko S.V., “Model volnovogo techeniya stekayuschei plenki vyazkoi zhidkosti”, Prikl. mekhan. i tekhn. fiz., 54:2 (2013), 21–31 | MR | Zbl

[20] Ruyer-Quil C., Manneville P., “Modeling film flows down inclined planes”, Eur. Phys. J. B, 6:2 (1998), 277–292 | DOI

[21] Demekhin E.A., Tokarev G.Yu., Shkadov V.Ya., “O suschestvovanii kriticheskogo chisla Reinoldsa dlya stekayuschei pod deistviem vesa plenki zhidkosti”, Teor. osnovy khim. tekhnol., 21:4 (1987), 555–559

[22] Sisoev G.M., Shkadov V.Ya., “Razvitie dominiruyuschikh voln iz malykh vozmuschenii v stekayuschikh plenkakh vyazkoi zhidkosti”, Izv. RAN. Mekhan. zhidkosti i gaza, 1997, no. 6, 30–41 | MR | Zbl

[23] Liu J., Gollub J.P., “Solitary wave dynamics of film flows”, Phys. Fluids, 6 (1994), 1702–1712 | DOI

[24] Bunov A.V., Demekhin E.A., Shkadov V.Ya., “O needinstvennosti nelineinykh volnovykh reshenii v vyazkom sloe”, Prikl. matem. i mekhan., 48:4 (1984), 691–696 | MR

[25] Demekhin E.A., Tokarev G.Y., Shkadov V.Y., “Hierarchy of bifurcations of spaceperiodic structures in a nonlinear model of active dissipative media”, Physica D, 5:2 (1991), 338–361 | DOI | MR

[26] Shkadov V.Ya., “K teorii volnovykh techenii tonkogo sloya vyazkoi zhidkosti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1968, no. 2, 20–25

[27] Sisoev G.M., Shkadov V.Ya., “Dominiruyuschie volny v stekayuschikh plenkakh vyazkoi zhidkosti”, Dokl. RAN, 357:4 (1997), 483–486 | Zbl

[28] Bunov A.V., Demekhin E.A., Shkadov V.Ya., “Bifurkatsii uedinennykh voln v stekayuschem sloe zhidkosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 1986, no. 2, 73–78 | MR | Zbl

[29] Demekhin E.A., Shkadov V.Ya., “K teorii solitonov v sistemakh s dissipatsiei”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1986, no. 3, 91–97 | MR | Zbl

[30] Chang H.-C., Demekhin E.A., Kalaidin E., “Simulation of noise-driven wave dynamics on a falling film”, AIChE J., 42:6 (1996), 1553–1568 | DOI

[31] Ruyer-Quil C., Manneville P., “On the speed of solitary waves running down a vertical wall”, J. Fluid Mech., 531 (2005), 181–190 | DOI | MR | Zbl

[32] Demekhin E.A., Tokarev G.Yu, Shkadov V.Ya., “Dvumernye nestatsionarnye volny na vertikalnoi plenke zhidkosti”, Teor. osnovy khim. tekhnol., 21:2 (1987), 177–183

[33] Tushkanov D.A., Shkadov V.Ya., “Nelineinye volny v plenke zhidkosti na pochti gorizontalnoi poverkhnosti”, Izv. RAN. Mekhan. zhidkosti i gaza, 2006, no. 3, 11–24 | MR | Zbl

[34] Liu J., Paul J.D., Gollub J.P., “Measurements of the primary instabilities of film flows”, J. Fluid Mech., 250 (1993), 69–101 | DOI