Comparison of the system “Chaplygin ball with a rotor” and the Zhukovskii system from the rough Liouville equivalence point of view
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 28-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem of symplectic geometry, namely, topological analysis of a rolling balanced dynamically nonsymmetric ball with a rotor on a rough horizontal plane is considered. The Liouville equivalence between this system and Zhukovskii's case is studied.
@article{VMUMM_2017_6_a4,
     author = {A. I. Zhila},
     title = {Comparison of the system {{\textquotedblleft}Chaplygin} ball with a rotor{\textquotedblright} and the {Zhukovskii} system from the rough {Liouville} equivalence point of view},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {28--33},
     year = {2017},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a4/}
}
TY  - JOUR
AU  - A. I. Zhila
TI  - Comparison of the system “Chaplygin ball with a rotor” and the Zhukovskii system from the rough Liouville equivalence point of view
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 28
EP  - 33
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a4/
LA  - ru
ID  - VMUMM_2017_6_a4
ER  - 
%0 Journal Article
%A A. I. Zhila
%T Comparison of the system “Chaplygin ball with a rotor” and the Zhukovskii system from the rough Liouville equivalence point of view
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 28-33
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a4/
%G ru
%F VMUMM_2017_6_a4
A. I. Zhila. Comparison of the system “Chaplygin ball with a rotor” and the Zhukovskii system from the rough Liouville equivalence point of view. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 28-33. http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a4/

[1] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986) | Zbl

[2] Fomenko A.T., Tsishang Kh., “O topologii trekhmernykh mnogoobrazii, voznikayuschikh v gamiltonovoi mekhanike”, Dokl. AN SSSR, 294:2 (1987), 283–287 | MR | Zbl

[3] Matveev S.V., Fomenko A.T., “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Rus. Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl

[4] Fomenko A.T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407 | Zbl

[5] Fomenko A.T., Nikolaenko S.S., “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. and Phys., 87 (2015), 115–133 | DOI | MR | Zbl

[6] Fomenko A.T., Konyaev A.Yu., “Algebra and geometry through Hamiltonian systems”, Continuous and Distributed Systems. Theory and Applications, Solid Mechanics and Its Application, 211, eds. V.Z. Zgurovsky, V.A. Sadovnichiy, Springer, 2014, 3–21 | DOI | MR | Zbl

[7] Fomenko A.T., Konyaev A.Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topol. and its Appl., 159 (2012), 1964–1975 | DOI | MR | Zbl

[8] Kudryavtseva E.A., Fomenko A.T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN. Ser. matem., 446:6 (2012), 615–617 | Zbl

[9] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | DOI | MR | Zbl

[10] Chaplygin S.A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168

[11] Borisov A.V., Mamaev I.S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (1987), 793–795 | DOI

[12] Bolsinov A.V. Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, RKhD, Izhevsk, 1999 | MR

[13] Moskvin A.Yu., “Shar Chaplygina s girostatom: osobye resheniya”, Nelineinaya dinamika, 5:3 (2009), 345–356

[14] Kharlamov M.P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 ; 2-е изд., Ин-т компьют. иссл., М.–Ижевск, 2015 | MR

[15] Kilin A.A., “The dynamics of Chapligin ball: the qualitative and computeral analysis”, Regular and Chaotic Dynamics, 6:3 (2001), 291–306 | DOI | MR | Zbl

[16] Zhila A.I., “Shar Chaplygina s rotorom: nevyrozhdennost osobykh tochek”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 2, 3–12 | MR | Zbl