@article{VMUMM_2017_6_a11,
author = {E. D. Martynova and N. S. Stetsenko},
title = {Use of a one-parameter family of {Gordon{\textendash}Showalter} objective derivatives to describe finite deformations of viscoelastic bodies},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {64--68},
year = {2017},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a11/}
}
TY - JOUR AU - E. D. Martynova AU - N. S. Stetsenko TI - Use of a one-parameter family of Gordon–Showalter objective derivatives to describe finite deformations of viscoelastic bodies JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 64 EP - 68 IS - 6 UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a11/ LA - ru ID - VMUMM_2017_6_a11 ER -
%0 Journal Article %A E. D. Martynova %A N. S. Stetsenko %T Use of a one-parameter family of Gordon–Showalter objective derivatives to describe finite deformations of viscoelastic bodies %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2017 %P 64-68 %N 6 %U http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a11/ %G ru %F VMUMM_2017_6_a11
E. D. Martynova; N. S. Stetsenko. Use of a one-parameter family of Gordon–Showalter objective derivatives to describe finite deformations of viscoelastic bodies. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 64-68. http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a11/
[1] Ilyushin A. A., Pobedrya B.E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970 | MR
[2] Lure A.I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR
[3] Brovko G.L., “Nekotorye podkhody k postroeniyu opredelyayuschikh sootnoshenii plastichnosti pri bolshikh deformatsiyakh”, Uprugost i neuprugost, eds. M.Sh. Israilov, A.P. Shmakov, V.S. Lenskii, Izd-vo MGU, M., 1987, 68–81 | MR
[4] Oldroyd J.G., “On the formulation of rheological equations of states”, Proc. Roy. Soc. London, A 200 (1950), 523–541 | DOI | MR | Zbl
[5] Gordon J.R., Schowalter W.R., “Anisotropic fluid theory: a different approach to the dumbbell theory of dilute polymer solutions”, Trans. Soc. Rheol., 16 (1972), 79–97 | DOI | Zbl
[6] Brovko G.L., “Svoistva i integrirovanie nekotorykh proizvodnykh po vremeni ot tenzornykh protsessov v mekhanike sploshnoi sredy”, Izv. AN SSSR. Mekhan. tverdogo tela, 1990, no. 1, 54–60 | MR
[7] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Mir, M., 1975