The proof of simultaneous conditional stabilization and destabilization of linear Hamiltonian systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 8-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that each linear Hamiltonian system is simultaneously conditionally (with respect to a subspace of half dimension) stabilizable and destabilizable by infinitesimal Hamiltonian perturbation.
@article{VMUMM_2017_6_a1,
     author = {T. V. Salova},
     title = {The proof of simultaneous conditional stabilization and destabilization of linear {Hamiltonian} systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {8--15},
     year = {2017},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a1/}
}
TY  - JOUR
AU  - T. V. Salova
TI  - The proof of simultaneous conditional stabilization and destabilization of linear Hamiltonian systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 8
EP  - 15
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a1/
LA  - ru
ID  - VMUMM_2017_6_a1
ER  - 
%0 Journal Article
%A T. V. Salova
%T The proof of simultaneous conditional stabilization and destabilization of linear Hamiltonian systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 8-15
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a1/
%G ru
%F VMUMM_2017_6_a1
T. V. Salova. The proof of simultaneous conditional stabilization and destabilization of linear Hamiltonian systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 8-15. http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a1/

[1] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Editorial URSS, M., 2000 | MR

[2] Salova T.V., “Ob odnovremennoi uslovnoi stabiliziruemosti i destabiliziruemosti lineinykh gamiltonovykh sistem”, Differents. uravneniya, 50:12 (2014), 1676–1677 | DOI | MR | Zbl

[3] Salova T.V., “Odnovremennaya dostizhimost tsentralnykh pokazatelei chetyrekhmernykh gamiltonovykh sistem pri beskonechno malykh gamiltonovykh vozmuscheniyakh”, Differents. uravneniya, 50:11 (2014), 1441–1454 | DOI | MR | Zbl

[4] Sergeev I.N., “K teorii pokazatelei Lyapunova lineinykh sistem differentsialnykh uravnenii”, Tr. seminara im. I. G. Petrovskogo, 9, 1983, 111–166 | Zbl

[5] Fam Fu., “O dostizhimosti tsentralnykh pokazatelei lineinoi gamiltonovoi sistemy. I”, Differents. uravneniya, 16:11 (1980), 2012–2022 | MR | Zbl

[6] Sergeev I.N., “Tochnye granitsy podvizhnosti pokazatelei Lyapunova lineinykh gamiltonovykh sistem pri malykh v srednem vozmuscheniyakh”, Tr. seminara im. I. G. Petrovskogo, 14, 1989, 125–139 | Zbl

[7] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970

[8] Khausdorf F., Teoriya mnozhestv, Editorial URSS, M., 2004