The length of minimal filling for a five-point metric space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The length of minimal filling of arbitrary five-points metric space is represented like function of length between points from this metric space.
@article{VMUMM_2017_6_a0,
     author = {B. B. Bednov},
     title = {The length of minimal filling for a five-point metric space},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     year = {2017},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a0/}
}
TY  - JOUR
AU  - B. B. Bednov
TI  - The length of minimal filling for a five-point metric space
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 3
EP  - 8
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a0/
LA  - ru
ID  - VMUMM_2017_6_a0
ER  - 
%0 Journal Article
%A B. B. Bednov
%T The length of minimal filling for a five-point metric space
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 3-8
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a0/
%G ru
%F VMUMM_2017_6_a0
B. B. Bednov. The length of minimal filling for a five-point metric space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2017), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2017_6_a0/

[1] Ivanov A.O., Tuzhilin A.A., Teoriya ekstremalnykh setei. Sovremennaya matematika, IKI, M.–Izhevsk, 2003 | MR

[2] Ivanov A.O., Tuzhilin A.A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl

[3] Eremin A.Yu., “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Matem. sb., 204:9 (2013), 51–72 | DOI | MR | Zbl

[4] Bednov B.B., Borodin P.A., “Banakhovy prostranstva, realizuyuschie minimalnye zapolneniya”, Matem. sb., 205:4 (2014), 3–19 | DOI | MR

[5] Bednov B.B., Strelkova N.P., “O suschestvovanii kratchaishikh setei v banakhovykh prostranstvakh”, Matem. zametki, 94:1 (2013), 46–54 | DOI | MR | Zbl

[6] Bednov B.B., “Dlina minimalnogo zapolneniya tipa zvezdy”, Matem. sb., 207:8 (2016), 31–46 | DOI | MR | Zbl

[7] Rubinshtein G.Sh., “Ob odnoi ekstremalnoi zadache v lineinom normirovannom prostranstve”, Sib. matem. zhurn., VI:3 (1965), 711–714 | Zbl

[8] Bednov B.B., “O tochkakh Shteinera v prostranstve nepreryvnykh funktsii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2011, no. 6, 26–31 | MR | Zbl

[9] Bogachev V.I., Smolyanov O.G., Deistvitelnyi i funktsionalnyi analiz: universitetskii kurs, NITs RKhD, M.–Izhevsk, 2009