Explicit solution to a linear-quadratic optimal control problem with an arbitrary terminal
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 55-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An optimal control problem is considered and the sum of a linear-quadratic integral functional and the terminal term of arbitrary form is minimized. It is proved that the control can be also constructed in explicit analytic form in this case.
@article{VMUMM_2017_5_a9,
     author = {A. Z. Asekov},
     title = {Explicit solution to a linear-quadratic optimal control problem with an arbitrary terminal},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--58},
     year = {2017},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a9/}
}
TY  - JOUR
AU  - A. Z. Asekov
TI  - Explicit solution to a linear-quadratic optimal control problem with an arbitrary terminal
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 55
EP  - 58
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a9/
LA  - ru
ID  - VMUMM_2017_5_a9
ER  - 
%0 Journal Article
%A A. Z. Asekov
%T Explicit solution to a linear-quadratic optimal control problem with an arbitrary terminal
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 55-58
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a9/
%G ru
%F VMUMM_2017_5_a9
A. Z. Asekov. Explicit solution to a linear-quadratic optimal control problem with an arbitrary terminal. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 55-58. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a9/

[1] Chernousko F.L., Kolmanovskii V.B., Optimalnoe upravlenie pri sluchainykh vozmuscheniyakh, Fizmatlit, M., 1978 | MR

[2] Suslov S.K., “Quantum integrals of motion for variable quadratic Hamiltonians”, Ann. Phys., 325:9 (2010), 1884–1912 | DOI | MR | Zbl

[3] Yau S.S.T., “Computation of Fokker–Planck equation”, Quart. Appl. Math., 62:4 (2004), 643–650 | DOI | MR | Zbl

[4] Chechkin A.G., “Explicit form of the fundamental solution to a second order parabolic operator”, J. Math. Sci., 210:4 (2015), 545–555 | DOI | MR | Zbl