Incomparable integrals and approximate calculation of monotone Boolean functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 51-55

Voir la notice de l'article provenant de la source Math-Net.Ru

The number of incomparable $k$-dimensional intervals in the Boolean $n$-cube is estimated. The result is used to estimate the complexity of approximate computation of an arbitrary monotone Boolean function of $n$ variables.
@article{VMUMM_2017_5_a8,
     author = {A. V. Chashkin},
     title = {Incomparable integrals and approximate calculation of monotone {Boolean} functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--55},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a8/}
}
TY  - JOUR
AU  - A. V. Chashkin
TI  - Incomparable integrals and approximate calculation of monotone Boolean functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 51
EP  - 55
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a8/
LA  - ru
ID  - VMUMM_2017_5_a8
ER  - 
%0 Journal Article
%A A. V. Chashkin
%T Incomparable integrals and approximate calculation of monotone Boolean functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 51-55
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a8/
%G ru
%F VMUMM_2017_5_a8
A. V. Chashkin. Incomparable integrals and approximate calculation of monotone Boolean functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a8/