Incomparable integrals and approximate calculation of monotone Boolean functions
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 51-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The number of incomparable $k$-dimensional intervals in the Boolean $n$-cube is estimated. The result is used to estimate the complexity of approximate computation of an arbitrary monotone Boolean function of $n$ variables.
			
            
            
            
          
        
      @article{VMUMM_2017_5_a8,
     author = {A. V. Chashkin},
     title = {Incomparable integrals and approximate calculation of monotone {Boolean} functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--55},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a8/}
}
                      
                      
                    TY - JOUR AU - A. V. Chashkin TI - Incomparable integrals and approximate calculation of monotone Boolean functions JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 51 EP - 55 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a8/ LA - ru ID - VMUMM_2017_5_a8 ER -
A. V. Chashkin. Incomparable integrals and approximate calculation of monotone Boolean functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a8/
