Incomparable integrals and approximate calculation of monotone Boolean functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 51-55
Cet article a éte moissonné depuis la source Math-Net.Ru
The number of incomparable $k$-dimensional intervals in the Boolean $n$-cube is estimated. The result is used to estimate the complexity of approximate computation of an arbitrary monotone Boolean function of $n$ variables.
@article{VMUMM_2017_5_a8,
author = {A. V. Chashkin},
title = {Incomparable integrals and approximate calculation of monotone {Boolean} functions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {51--55},
year = {2017},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a8/}
}
A. V. Chashkin. Incomparable integrals and approximate calculation of monotone Boolean functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a8/
[1] Ugolnikov A.B., “O realizatsii monotonnykh funktsii skhemami iz funktsionalnykh elementov”, Problemy kibernetiki, 31, Nauka, M., 1976, 167–185 | MR
[2] Lupanov O.B., “Ob odnom podkhode k sintezu upravlyayuschikh sistem — printsipe lokalnogo kodirovaniya”, Problemy kibernetiki, 14, Nauka, M., 1965, 31–110
[3] Sholomov L.A., “O realizatsii nedoopredelennykh bulevykh funktsii skhemami iz funktsionalnykh elementov”, Problemy kibernetiki, 21, Nauka, M., 1969, 215–226