The synthesis of an inhomogeneous elastic system with a boundary load
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 36-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an adequate description of free and controlled movements of one-dimensional elastic systems with distributed parameters, we consider a suitable model described by a linear boundary value problem with boundary conditions of the third kind. It is assumed that the control action enters additively in the equation of motion and in the boundary conditions. The coefficients of the equation of state and the boundary conditions may depend on the spectral parameter (frequency), which allows one to take into account the inertial and/or force load at one or both ends as well as the elastic properties (the Rayleigh correction) and other imperfections.
@article{VMUMM_2017_5_a5,
     author = {L. D. Akulenko and A. A. Gavrikov and S. V. Nesterov},
     title = {The synthesis of an inhomogeneous elastic system with a boundary load},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {36--42},
     year = {2017},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a5/}
}
TY  - JOUR
AU  - L. D. Akulenko
AU  - A. A. Gavrikov
AU  - S. V. Nesterov
TI  - The synthesis of an inhomogeneous elastic system with a boundary load
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 36
EP  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a5/
LA  - ru
ID  - VMUMM_2017_5_a5
ER  - 
%0 Journal Article
%A L. D. Akulenko
%A A. A. Gavrikov
%A S. V. Nesterov
%T The synthesis of an inhomogeneous elastic system with a boundary load
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 36-42
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a5/
%G ru
%F VMUMM_2017_5_a5
L. D. Akulenko; A. A. Gavrikov; S. V. Nesterov. The synthesis of an inhomogeneous elastic system with a boundary load. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 36-42. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a5/

[1] Akulenko L.D., “Granichnoe kinematicheskoe upravlenie raspredelennoi kolebatelnoi sistemoi”, Prikl. matem. i mekhan., 71:6 (2007), 956–963 | MR | Zbl

[2] Greenberg L., Babuška I., “A continuous analogue of Sturm sequences in the context of Sturm–Liouville equations”, SIAM J. Numer. Anal., 26:4 (1989), 920–945 | DOI | MR | Zbl

[3] Abramov A.A., Aslanyan A.A., “Obobschenie odnogo metoda resheniya zadachi na sobstvennye znacheniya dlya gamiltonovykh sistem”, Zhurn. vychisl. matem. i matem. fiz., 34:12 (1994), 1896–1901 | MR | Zbl

[4] Konyukhova N.B., Staroverova I.B., “Modifikatsiya fazovogo metoda resheniya singulyarnykh samosopryazhennykh zadach Shturma–Liuvillya”, Zhurn. vychisl. matem. i matem. fiz., 37:10 (1997), 1183–1200 | MR | Zbl

[5] Chanane B., “Sturm–Liouville problems with parameter dependent potential and boundary conditions”, J. Comput. and Appl. Math., 212 (2008), 282–290 | DOI | MR | Zbl

[6] Kravchenko V.V., Torba S.M., “Modified spectral parameter power series representations for solutions of Sturm–Liouville equations and their applications”, Appl. Math. and Comput., 238 (2014), 82–105 | MR | Zbl

[7] Reutskiy S.Yu., “The method of external excitation for solving generalized Sturm–Liouville problems”, J. Comput. and Appl. Math., 233:9 (2010), 2374–2386 | DOI | MR | Zbl

[8] Mennicken R., Schmid H., Shkalikov A.A., “On the eigenvalue accumulation of Sturm–Liouville problems depending nonlinearly on the spectral parameter”, Math. Nachr., 189:1 (1998), 157–170 | DOI | MR | Zbl

[9] Bohner M., Kratz W., Šimon Hilscher R., “Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter”, Math. Nachr., 285:11–12 (2012), 1343–1356 | MR | Zbl

[10] Ghelardoni P., Gheri G., Marletta M., “Spectral corrections for Sturm–Liouville problems”, J. Comput. and Appl. Math., 132 (2001), 443–459 | DOI | MR | Zbl

[11] Akulenko L.D., Nesterov S.V., High-Precision Methods in Eigenvalue Problems and Their Applications, Chapman and Hall/CRC, Boca Raton, 2005 | MR | Zbl

[12] Akulenko L.D., Nesterov S.V., “Opredelenie chastot i form kolebanii neodnorodnykh raspredelennykh sistem s granichnymi usloviyami tretego roda”, Prikl. matem. i mekhan., 61:4 (1997), 547–555 | MR | Zbl

[13] Akulenko L.D., Nesterov S.V., “Sobstvennye kolebaniya raspredelennykh neodnorodnykh sistem, opisyvaemykh obobschennymi kraevymi zadachami”, Prikl. matem. i mekhan., 63:4 (1999), 645–654 | MR | Zbl

[14] Pryce J.D., Numerical solution of Sturm–Liouville problems, Oxford University Press, N.Y., 1993 | MR | Zbl

[15] Ledoux V., Van Daele M., Vanden Berghe G., “Efficient computation of high index Sturm–Liouville eigenvalues for problems in physics”, Comput. Phys. Communs., 180 (2009), 241–250 | DOI | MR | Zbl

[16] Akulenko L.D., Bolotnik N.N., “Kinematicheskoe upravlenie dvizheniem uprugoi sistemy”, Izv. RAN. Mekhan. tverdogo tela, 1984, no. 2, 168–176

[17] Hansen S., Zuazua E., “Exact controllability and stabilization of a vibrating string with an interior point mass”, SIAM J. Control Optim., 33 (1995), 1357–1391 | DOI | MR | Zbl