Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 26-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Creep curves produced by the Rabotnov nonlinear hereditary constitutive relation for multi-step uniaxial stress histories are studied analytically under minimal primary restrictions on two material functions of the relation. Dependence of creep curves asymptotic behavior at infinity on material functions properties and loading steps parameters is analyzed. Necessary and sufficient conditions for simulation of the fading memory property are obtained. The key role of a creep function derivative limit value at infinity for plastic strain accumulation rate is shown. A number of inherited properties, peculiarities and additional capabilities of the Rabotnov nonlinear relation are revealed in comparison to capabilities of the linear viscoelasticity relation and the ancestral properties.
@article{VMUMM_2017_5_a3,
     author = {A. V. Khokhlov},
     title = {Asymptotic behavior of creep curves in the {Rabotnov} nonlinear heredity theory under piecewise constant loadings and memory decay conditions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {26--31},
     year = {2017},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a3/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 26
EP  - 31
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a3/
LA  - ru
ID  - VMUMM_2017_5_a3
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 26-31
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a3/
%G ru
%F VMUMM_2017_5_a3
A. V. Khokhlov. Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 26-31. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a3/

[1] Rabotnov Yu.N., “Nekotorye voprosy teorii polzuchesti”, Vestn. Mosk. un-ta., 1948, no. 10, 81–91 | MR

[2] Namestnikov V.S., Rabotnov Yu.N., “O nasledstvennykh teoriyakh polzuchesti”, Prikl. matem. i teor. fiz., 2:4 (1961), 148–150

[3] Rabotnov Yu.N., Polzuchest elementov konstruktsii, Nauka, M., 1966

[4] Rabotnov Yu.N., Papernik L.Kh., Stepanychev E.I., “Prilozhenie nelineinoi teorii nasledstvennosti k opisaniyu vremennykh effektov v polimernykh materialakh”, Mekhan. polimerov, 1971, no. 1, 74–87

[5] Dergunov N.N., Papernik L.Kh., Rabotnov Yu.N., “Analiz povedeniya grafita na osnove nelineinoi nasledstvennoi teorii”, Prikl. matem. i teor. fiz., 12:2 (1971), 76–82

[6] Rabotnov Yu.N., Papernik L.Kh., Stepanychev E.I., “Nelineinaya polzuchest stekloplastika TS8/3-250”, Mekhan. polimerov, 1971, no. 3, 391–397

[7] Rabotnov Yu.N., Suvorova Yu.V., “O zakone deformirovaniya metallov pri odnoosnom nagruzhenii”, Izv. AN SSSR. Mekhan. tverdogo tela, 1972, no. 4, 41–54

[8] Rabotnov Yu.N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977 | MR

[9] Suvorova Yu.V., “O nelineino-nasledstvennom uravnenii Yu.N. Rabotnova i ego prilozheniyakh”, Izv. PAN. Mekhan. tverdogo tela, 2004, no. 1, 174–181

[10] Fung Y.C., “Stress-strain history relations of soft tissues in simple elongation”, Biomechanics, Its Foundations and Objectives, eds. Y.C. Fung et al., Prentice-Hall, New Jersey, 1972, 181–208

[11] Sauren A.A., Rousseau E.P., “A concise sensitivity analysis of the quasi-linear viscoelastic model proposed by Fung”, J. Biomech. Eng., 105 (1983), 92–95 | DOI

[12] Fung Y.C., Biomechanics. Mechanical Properties of Living Tissues, Springer-Verlag, N.Y., 1993

[13] De Frate L.E., Li G., “The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model”, Biomech. and Model. Mechanobiol., 6:4 (2007), 245–251 | DOI

[14] Duenwald S.E, Vanderby R., Lakes R.S., “Constitutive equations for ligament and other soft tissue: evaluation by experiment”, Acta Mech., 205 (2009), 23–33 | DOI | Zbl

[15] De Pascalis R., Abrahams I.D., Parnell W.J., “On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model”, Proc. Roy. Soc. A, 470 (2014), 20140058 | DOI

[16] Khokhlov A.V., “Krivye polzuchesti i relaksatsii nelineinogo opredelyayuschego sootnosheniya Yu.N. Rabotnova dlya vyazkouprugoplastichnykh materialov”, Probl. prochnosti i plastichnosti, 78:4 (2016), 452–466

[17] Khokhlov A.V., “Opredelyayuschee sootnoshenie dlya reologicheskikh protsessov c izvestnoi istoriei nagruzheniya. Krivye polzuchesti i dlitelnoi prochnosti”, Izv. RAN. Mekhan. tverdogo tela, 2008, no. 2, 140–160

[18] Khokhlov A.V., “Svoistva nelineinoi modeli vyazkouprugoplastichnosti tipa Maksvella s dvumya materialnymi funktsiyami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 6, 36–41 | Zbl

[19] Khokhlov A.V., “Krivye obratnoi polzuchesti v ramkakh lineinoi vyazkouprugosti i neobkhodimye ogranicheniya na funktsiyu polzuchesti”, Probl. prochnosti i plastichnosti, 75:4 (2013), 257–267

[20] Khokhlov A.V., “Kachestvennyi analiz obschikh svoistv teoreticheskikh krivykh lineinogo opredelyayuschego sootnosheniya vyazkouprugosti”, Nauka i obrazovanie, 2016, no. 5, 187–245 (data obrascheniya: 14.06.2016) http://technomag.edu.ru/doc/840650.html

[21] Khokhlov A.V., “Svoistva krivykh polzuchesti pri stupenchatom nagruzhenii lineinogo opredelyayuschego sootnosheniya vyazkouprugosti”, Probl. prochnosti i plastichnosti, 77:4 (2015), 344–359

[22] Shesterikov S.A., Yumasheva M.A., “Konkretizatsiya uravneniya sostoyaniya pri polzuchesti”, Izv. AN SSSR. Mekhan. tverdogo tela, 1984, no. 1, 86–91