@article{VMUMM_2017_5_a3,
author = {A. V. Khokhlov},
title = {Asymptotic behavior of creep curves in the {Rabotnov} nonlinear heredity theory under piecewise constant loadings and memory decay conditions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {26--31},
year = {2017},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a3/}
}
TY - JOUR AU - A. V. Khokhlov TI - Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 26 EP - 31 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a3/ LA - ru ID - VMUMM_2017_5_a3 ER -
%0 Journal Article %A A. V. Khokhlov %T Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2017 %P 26-31 %N 5 %U http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a3/ %G ru %F VMUMM_2017_5_a3
A. V. Khokhlov. Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 26-31. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a3/
[1] Rabotnov Yu.N., “Nekotorye voprosy teorii polzuchesti”, Vestn. Mosk. un-ta., 1948, no. 10, 81–91 | MR
[2] Namestnikov V.S., Rabotnov Yu.N., “O nasledstvennykh teoriyakh polzuchesti”, Prikl. matem. i teor. fiz., 2:4 (1961), 148–150
[3] Rabotnov Yu.N., Polzuchest elementov konstruktsii, Nauka, M., 1966
[4] Rabotnov Yu.N., Papernik L.Kh., Stepanychev E.I., “Prilozhenie nelineinoi teorii nasledstvennosti k opisaniyu vremennykh effektov v polimernykh materialakh”, Mekhan. polimerov, 1971, no. 1, 74–87
[5] Dergunov N.N., Papernik L.Kh., Rabotnov Yu.N., “Analiz povedeniya grafita na osnove nelineinoi nasledstvennoi teorii”, Prikl. matem. i teor. fiz., 12:2 (1971), 76–82
[6] Rabotnov Yu.N., Papernik L.Kh., Stepanychev E.I., “Nelineinaya polzuchest stekloplastika TS8/3-250”, Mekhan. polimerov, 1971, no. 3, 391–397
[7] Rabotnov Yu.N., Suvorova Yu.V., “O zakone deformirovaniya metallov pri odnoosnom nagruzhenii”, Izv. AN SSSR. Mekhan. tverdogo tela, 1972, no. 4, 41–54
[8] Rabotnov Yu.N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977 | MR
[9] Suvorova Yu.V., “O nelineino-nasledstvennom uravnenii Yu.N. Rabotnova i ego prilozheniyakh”, Izv. PAN. Mekhan. tverdogo tela, 2004, no. 1, 174–181
[10] Fung Y.C., “Stress-strain history relations of soft tissues in simple elongation”, Biomechanics, Its Foundations and Objectives, eds. Y.C. Fung et al., Prentice-Hall, New Jersey, 1972, 181–208
[11] Sauren A.A., Rousseau E.P., “A concise sensitivity analysis of the quasi-linear viscoelastic model proposed by Fung”, J. Biomech. Eng., 105 (1983), 92–95 | DOI
[12] Fung Y.C., Biomechanics. Mechanical Properties of Living Tissues, Springer-Verlag, N.Y., 1993
[13] De Frate L.E., Li G., “The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model”, Biomech. and Model. Mechanobiol., 6:4 (2007), 245–251 | DOI
[14] Duenwald S.E, Vanderby R., Lakes R.S., “Constitutive equations for ligament and other soft tissue: evaluation by experiment”, Acta Mech., 205 (2009), 23–33 | DOI | Zbl
[15] De Pascalis R., Abrahams I.D., Parnell W.J., “On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model”, Proc. Roy. Soc. A, 470 (2014), 20140058 | DOI
[16] Khokhlov A.V., “Krivye polzuchesti i relaksatsii nelineinogo opredelyayuschego sootnosheniya Yu.N. Rabotnova dlya vyazkouprugoplastichnykh materialov”, Probl. prochnosti i plastichnosti, 78:4 (2016), 452–466
[17] Khokhlov A.V., “Opredelyayuschee sootnoshenie dlya reologicheskikh protsessov c izvestnoi istoriei nagruzheniya. Krivye polzuchesti i dlitelnoi prochnosti”, Izv. RAN. Mekhan. tverdogo tela, 2008, no. 2, 140–160
[18] Khokhlov A.V., “Svoistva nelineinoi modeli vyazkouprugoplastichnosti tipa Maksvella s dvumya materialnymi funktsiyami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 6, 36–41 | Zbl
[19] Khokhlov A.V., “Krivye obratnoi polzuchesti v ramkakh lineinoi vyazkouprugosti i neobkhodimye ogranicheniya na funktsiyu polzuchesti”, Probl. prochnosti i plastichnosti, 75:4 (2013), 257–267
[20] Khokhlov A.V., “Kachestvennyi analiz obschikh svoistv teoreticheskikh krivykh lineinogo opredelyayuschego sootnosheniya vyazkouprugosti”, Nauka i obrazovanie, 2016, no. 5, 187–245 (data obrascheniya: 14.06.2016) http://technomag.edu.ru/doc/840650.html
[21] Khokhlov A.V., “Svoistva krivykh polzuchesti pri stupenchatom nagruzhenii lineinogo opredelyayuschego sootnosheniya vyazkouprugosti”, Probl. prochnosti i plastichnosti, 77:4 (2015), 344–359
[22] Shesterikov S.A., Yumasheva M.A., “Konkretizatsiya uravneniya sostoyaniya pri polzuchesti”, Izv. AN SSSR. Mekhan. tverdogo tela, 1984, no. 1, 86–91