Brondsted order in a metric space and generalizations of Caristi theorem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 21-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fixed point and coincidence theorems for mappings of ordered sets, as well as their metric counterparts generalizing the well-known Caristi's fixed point theorem are presented.
@article{VMUMM_2017_5_a2,
     author = {T. N. Fomenko},
     title = {Brondsted order in a metric space and generalizations of {Caristi} theorem},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--25},
     year = {2017},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a2/}
}
TY  - JOUR
AU  - T. N. Fomenko
TI  - Brondsted order in a metric space and generalizations of Caristi theorem
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 21
EP  - 25
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a2/
LA  - ru
ID  - VMUMM_2017_5_a2
ER  - 
%0 Journal Article
%A T. N. Fomenko
%T Brondsted order in a metric space and generalizations of Caristi theorem
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 21-25
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a2/
%G ru
%F VMUMM_2017_5_a2
T. N. Fomenko. Brondsted order in a metric space and generalizations of Caristi theorem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 21-25. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a2/

[1] W. A. Kirk, B. Sims (eds.), Handbook of metric fixed point theory, Springer Science Business Media, N.Y., 2001 | MR

[2] Abian S., Brown A.B., “A theorem on partially ordered sets, with applications to fixed point theorems”, Can. J. Math., 13 (1961), 78–82 | DOI | MR | Zbl

[3] Smithson R.E., “Fixed points of order preserving multifunctions”, Proc. Amer. Math. Soc., 2 (1971), 304–310 | DOI | MR

[4] Zermelo E., “Beweis, das jede Menge wohlgeordnet werden kann”, Math. Ann., 59 (1904), 514–516 | DOI | MR | Zbl

[5] Zermelo E., “Neuer Beweis für die Miiglichkeit einer Wohlordnung”, Math. Ann., 65 (1908), 107–128 | DOI | MR | Zbl

[6] Nadler S.B., Jr., “Multi-valued contraction mappings”, Pacif. J. Math., 30 (1969), 475–488 | DOI | MR | Zbl

[7] Ekeland I., “On the variational principle”, J. Math. Anal. and Appl., 47 (1974), 324–353 | DOI | MR | Zbl

[8] DeMarr R., “Partially ordered spaces and metric spaces”, Amer. Math. Month., 72:6 (1965), 628–631 | MR | Zbl

[9] Bishop E., Phelps R.R., “The support functionals of a convex set”, Selected Papers of Errett Bishop, v. 7, World Scientific, 1963, 27–35 | MR

[10] Jachymski J., “Some consequences of fundamental ordering principles in metric fixed point theory”, Ann. Univ. M. Curie-Sklodowska. A, 51 (1997), 123–134 | MR | Zbl

[11] Brøndsted A., “On a lemma of Bishop and Phelps”, Pacif. J. Math., 55 (1974), 335–341 | DOI | MR

[12] Caristi J., “Fixed point theorems for mappings satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251 | DOI | MR | Zbl

[13] Podoprikhin D.A., Fomenko T.N., “O sovpadeniyakh semeistv otobrazhenii uporyadochennykh mnozhestv”, Dokl. RAN. Matematika, 471:1 (2016), 16–18 | DOI | MR | Zbl

[14] Fomenko T.N., Podoprikhin D.A., “Common fixed points and coincidences of mapping families on partially ordered sets”, Topol. and its Appl., 221 (2017), 275–285 | DOI | MR | Zbl

[15] Fomenko T.N., Podoprikhin D.A., “Fixed points and coincidences of mappings of partially ordered sets”, J. Fixed Point Theory and its Appl., 18 (2016), 823–842 | DOI | MR | Zbl