A feature in deriving the Gibbs distribution from the entropy maximum principle
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 67-69

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Gibbs distribution may not provide the entropy maximum.
@article{VMUMM_2017_5_a13,
     author = {A. M. Shmatkov},
     title = {A feature in deriving the {Gibbs} distribution from the entropy maximum principle},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {67--69},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a13/}
}
TY  - JOUR
AU  - A. M. Shmatkov
TI  - A feature in deriving the Gibbs distribution from the entropy maximum principle
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 67
EP  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a13/
LA  - ru
ID  - VMUMM_2017_5_a13
ER  - 
%0 Journal Article
%A A. M. Shmatkov
%T A feature in deriving the Gibbs distribution from the entropy maximum principle
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 67-69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a13/
%G ru
%F VMUMM_2017_5_a13
A. M. Shmatkov. A feature in deriving the Gibbs distribution from the entropy maximum principle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 67-69. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a13/