Estimates of norms of functions represented as double series over cosines with multiple-monotone coefficients
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove lower and upper bounds for the norms of functions being the sums of double series in cosines.
@article{VMUMM_2017_5_a0,
     author = {T. M. Vukolova},
     title = {Estimates of norms of functions represented as double series over cosines with multiple-monotone coefficients},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--13},
     year = {2017},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a0/}
}
TY  - JOUR
AU  - T. M. Vukolova
TI  - Estimates of norms of functions represented as double series over cosines with multiple-monotone coefficients
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 3
EP  - 13
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a0/
LA  - ru
ID  - VMUMM_2017_5_a0
ER  - 
%0 Journal Article
%A T. M. Vukolova
%T Estimates of norms of functions represented as double series over cosines with multiple-monotone coefficients
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 3-13
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a0/
%G ru
%F VMUMM_2017_5_a0
T. M. Vukolova. Estimates of norms of functions represented as double series over cosines with multiple-monotone coefficients. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 3-13. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a0/

[1] Hardy G.H., “On double Fouries series and especially those which represent the double zeta functions with real and incommensurable parameters”, Quart. J. Math., 37:1 (1906), 53–79

[2] Vukolova T.M., Dyachenko M.I., “Otsenki smeshannykh norm summ dvoinykh trigonometricheskikh ryadov s kratno-monotonnymi koeffitsientami”, Izv. vuzov. Matematika, 1997, no. 7, 3–13 | MR | Zbl

[3] Vukolova T.M., “O svoistvakh funktsii, predstavimykh trigonometricheskimi ryadami po sinusam s kratno-monotonnymi koeffitsientami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2007, no. 6, 61–63 | MR | Zbl

[4] Vukolova T.M., “O svoistvakh summ ryadov po kosinusam s kratno-monotonnymi koeffitsientami”, Mat-ly Mezhdunar. konf. “Teoriya funktsii i vychislitelnye metody”, posv. 60-letiyu so dnya rozhdeniya professora N. Temirgalieva, Tez. dokl. (Astana, 5–9 iyunya 2007 g.), Astana, 2007, 73–74

[5] Vukolova T.M., “Otsenki smeshannykh norm funktsii, predstavimykh dvoinymi ryadami po sinusam s kratno-monotonnymi koeffitsientami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 6, 61–63 | MR

[6] Vukolova T.M., “Otsenki smeshannykh norm funktsii, predstavimykh ryadami po proizvedeniyam kosinusov i sinusov s kratno-monotonnymi koeffitsientami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 5, 3–14 | MR

[7] Vukolova T.M., Dyachenko M.I., “O svoistvakh summ trigonometricheskikh ryadov s monotonnymi koeffitsientami”, Vestn. Mosk. un-ta. Matem. Mekhan., 1995, no. 3, 22–32 | MR | Zbl

[8] Bari N.K., Trigonometricheskie ryady, Nauka, M., 1961 | MR

[9] Vukolova T.M., “Otsenki smeshannykh norm proizvodnykh i smeshannykh modulei gladkosti funktsii, imeyuschikh monotonnye koeffitsienty Fure”, Matem. zametki, 97:6 (2015), 841–854 | DOI | MR | Zbl