Convex polyhedra of distributions preserved by operations over a finite field
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 54-58
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct families of polytopes in the space of probability distributions over a finite field, which are preserved, i.e. when adding or multiplying independent random variables with distributions from the constructed set, one obtains a result whose distribution belongs to the set as well.
@article{VMUMM_2017_4_a8,
author = {A. D. Yashunskii},
title = {Convex polyhedra of distributions preserved by operations over a finite field},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {54--58},
year = {2017},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a8/}
}
A. D. Yashunskii. Convex polyhedra of distributions preserved by operations over a finite field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 54-58. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a8/
[1] Yashunskii A.D., “O bespovtornykh preobrazovaniyakh sluchainykh velichin nad konechnymi polyami”, Diskretn. matem., 27:3 (2015), 145–157 | DOI | MR
[2] Belousov V.D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR
[3] Rado R., “An inequality”, J. London Math. Soc., 27 (1952), 1–6 | DOI | MR | Zbl
[4] Emelichev V.A., Kovalev M.M., Kravtsov M.K., Mnogogranniki, grafy, optimizatsiya (kombinatornaya teoriya mnogogrannikov), Nauka, M., 1981 | MR
[5] Hall M., “An existence theorem for latin squares”, Bull. Amer. Math. Soc., 51:6 (1945), 387–388 | DOI | MR | Zbl
[6] Kaluzhnin L.A., Suschanskii V.I., Preobrazovaniya i perestanovki, Nauka, M., 1979 | MR