Convex polyhedra of distributions preserved by operations over a finite field
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 54-58
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct families of polytopes in the space of probability distributions over a finite field, which are preserved, i.e. when adding or multiplying independent random variables with distributions from the constructed set, one obtains a result whose distribution belongs to the set as well.
			
            
            
            
          
        
      @article{VMUMM_2017_4_a8,
     author = {A. D. Yashunskii},
     title = {Convex polyhedra of distributions preserved by operations over a finite field},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--58},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a8/}
}
                      
                      
                    TY - JOUR AU - A. D. Yashunskii TI - Convex polyhedra of distributions preserved by operations over a finite field JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 54 EP - 58 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a8/ LA - ru ID - VMUMM_2017_4_a8 ER -
A. D. Yashunskii. Convex polyhedra of distributions preserved by operations over a finite field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 54-58. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a8/
