Convex polyhedra of distributions preserved by operations over a finite field
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 54-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct families of polytopes in the space of probability distributions over a finite field, which are preserved, i.e. when adding or multiplying independent random variables with distributions from the constructed set, one obtains a result whose distribution belongs to the set as well.
@article{VMUMM_2017_4_a8,
     author = {A. D. Yashunskii},
     title = {Convex polyhedra of distributions preserved by operations over a finite field},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--58},
     year = {2017},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a8/}
}
TY  - JOUR
AU  - A. D. Yashunskii
TI  - Convex polyhedra of distributions preserved by operations over a finite field
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 54
EP  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a8/
LA  - ru
ID  - VMUMM_2017_4_a8
ER  - 
%0 Journal Article
%A A. D. Yashunskii
%T Convex polyhedra of distributions preserved by operations over a finite field
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 54-58
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a8/
%G ru
%F VMUMM_2017_4_a8
A. D. Yashunskii. Convex polyhedra of distributions preserved by operations over a finite field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 54-58. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a8/

[1] Yashunskii A.D., “O bespovtornykh preobrazovaniyakh sluchainykh velichin nad konechnymi polyami”, Diskretn. matem., 27:3 (2015), 145–157 | DOI | MR

[2] Belousov V.D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR

[3] Rado R., “An inequality”, J. London Math. Soc., 27 (1952), 1–6 | DOI | MR | Zbl

[4] Emelichev V.A., Kovalev M.M., Kravtsov M.K., Mnogogranniki, grafy, optimizatsiya (kombinatornaya teoriya mnogogrannikov), Nauka, M., 1981 | MR

[5] Hall M., “An existence theorem for latin squares”, Bull. Amer. Math. Soc., 51:6 (1945), 387–388 | DOI | MR | Zbl

[6] Kaluzhnin L.A., Suschanskii V.I., Preobrazovaniya i perestanovki, Nauka, M., 1979 | MR