Fluid outflow from an orifice in a plane wall in the presence of a variable-strength source on the symmetry plane of flow
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 40-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A plane problem of unsteady jet outflow of an inviscid incompressible imponderable fluid through an orifice in a wall is considered in the presence of a variable-strength point source in a symmetry plane of the flow. The velocities of perturbed flow induced by the change in the source flow rate are assumed to be small compared to stationary flow velocities. The Gurevich–Haskind method is used to solve the problem. A boundary value problem for the complex potential of the perturbed flow is formulated and solved. The pressure distribution on solid walls is determined for the harmonic source strength variation with time. The evolution of the shape of the jet's free boundary is studied.
@article{VMUMM_2017_4_a6,
     author = {S. L. Tolokonnikov},
     title = {Fluid outflow from an orifice in a plane wall in the presence of a variable-strength source on the symmetry plane of flow},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--45},
     year = {2017},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a6/}
}
TY  - JOUR
AU  - S. L. Tolokonnikov
TI  - Fluid outflow from an orifice in a plane wall in the presence of a variable-strength source on the symmetry plane of flow
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 40
EP  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a6/
LA  - ru
ID  - VMUMM_2017_4_a6
ER  - 
%0 Journal Article
%A S. L. Tolokonnikov
%T Fluid outflow from an orifice in a plane wall in the presence of a variable-strength source on the symmetry plane of flow
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 40-45
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a6/
%G ru
%F VMUMM_2017_4_a6
S. L. Tolokonnikov. Fluid outflow from an orifice in a plane wall in the presence of a variable-strength source on the symmetry plane of flow. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 40-45. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a6/

[1] Gurevich M.I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979

[2] Kuznetsov A.V., “Istechenie zhidkosti cherez schel v ploskoi stenke v sredu s peremennym davleniem ”, Tr. seminara po kraevym zadacham, 5, Izd-vo Kazan. un-ta, Kazan, 1968, 161–173

[3] Kuznetsov A.V., Troepolskaya O.V., “Istechenie strui iz otverstiya peremennoi shiriny”, Tr. seminara po kraevym zadacham, 23, Izd-vo Kazan. un-ta, Kazan, 1987, 146–154

[4] Kuznetsov A.V., Saikin S.S., “Nestatsionarnoe istechenie neszhimaemoi zhidkosti iz sosuda”, Voprosy prikladnoi matematiki i mekhaniki, 2, Izd-vo ChGU, Cheboksary, 1972, 46–54

[5] Kuznetsov A.V., Troepolskaya O.V., “Ob odnoi zadache nestatsionarnogo istecheniya zhidkosti iz kanala ”, Tr. seminara po kraevym zadacham, 19, Izd-vo Kazan. un-ta, Kazan, 1983, 97–103

[6] Kozin N.S., “Malye vozmuscheniya strui, vytekayuschei iz scheli”, Prikl. matem. i mekhan., 36:4 (1972), 640–646

[7] Tolokonnikov S.L., “Istechenie zhidkosti cherez otverstie v stenke pri nalichii istochnika na ploskosti simmetrii techeniya”, Izv. TulGU. Estestv. nauki, 2010, no. 2, 126–133

[8] Kuznetsov A.V., Nestatsionarnye vozmuscheniya techenii zhidkosti so svobodnymi granitsami, Izd-vo Kazan. un-ta, Kazan, 1975 | MR

[9] Gurevich M.I., Khaskind M.D., “Struinoe obtekanie kontura, sovershayuschego malye kolebaniya”, Prikl. matem. i mekhan., 17:5 (1953), 58–65

[10] Kuznetsov A.V., Nestatsionarnye vozmuscheniya techenii zhidkosti so svobodnymi granitsami, Izd-vo Kazan. gos. un-ta, Kazan, 1975 | MR

[11] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR