The cooling of a lava flow spreading over a flat surface
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 36-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of cooling of a lava flow modelled by a viscous incompressible fluid spreading over a flat surface is considered. In order to model the free surface, a known analytical solution is used in the thin-layer approximation. The thickness of a thermal boundary layer is determined and the evolution of thermal fields in the lava profile is studied.
@article{VMUMM_2017_4_a5,
     author = {E. A. Vedeneeva and O. \`E. Mel'nik and I. S. Utkin},
     title = {The cooling of a lava flow spreading over a flat surface},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {36--40},
     year = {2017},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a5/}
}
TY  - JOUR
AU  - E. A. Vedeneeva
AU  - O. È. Mel'nik
AU  - I. S. Utkin
TI  - The cooling of a lava flow spreading over a flat surface
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 36
EP  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a5/
LA  - ru
ID  - VMUMM_2017_4_a5
ER  - 
%0 Journal Article
%A E. A. Vedeneeva
%A O. È. Mel'nik
%A I. S. Utkin
%T The cooling of a lava flow spreading over a flat surface
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 36-40
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a5/
%G ru
%F VMUMM_2017_4_a5
E. A. Vedeneeva; O. È. Mel'nik; I. S. Utkin. The cooling of a lava flow spreading over a flat surface. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 36-40. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a5/

[1] Costa A., Macedonio G., “Numerical simulation of lava flows based on depth-averaged equations”, Geophys. Res. Lett., 32 (2005), L05304 | DOI

[2] Cordonnier B., Lev E., Garel F., “Benchmarking lava-flow models”, Geol. Soc. Spec. Publ., 426 (2015), 425–445 | DOI

[3] Crisci G., Rongo R., Gregorio S., Spataro W., “The simulation model SCIARA: the 1991 and 2001 lava flows at Mount Etna”, J. Volcanol. Geotherm. Res., 132 (2004), 253–267 | DOI

[4] Favalli M., Pareschi M., Neri A., Isola I., “Forecasting lava flow paths by a stochastic approach”, Geophys. Res. Lett., 32 (2005), L03305 | DOI

[5] Cappello A., Hérault A., Bilotta G. et al., “MAGFLOW: a physics-based model for the dynamics of lava-flow emplacement”, Geol. Soc. Spec. Publ., 426 (2015), 357–373 | DOI

[6] Hérault A., Bilotta G., Vicari A. et al., “Numerical simulation of lava flow using a GPU SPH model”, Ann. Geophys., 54 (2011), 600–620 | DOI

[7] Huppert H., “The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface”, J. Fluid Mech., 121 (1982), 43–58 | DOI

[8] Neri A., “A local heat transfer analysis of lava cooling in the atmosphere: application to thermal diffusion-dominated lava flows”, J. Volc. Geotherm. Res., 81 (1998), 215–243 | DOI

[9] Sakimoto S.E.H., Zuber M.T., “Flow and convective cooling in lava tubes”, J. Geophys. Res., 103 (1998), 27465–27487 | DOI

[10] Hess K.-U., Dingwell D., “Viscosities of hydrous leucogranitic melts: non-Arrhenian model”, Amer. Miner., 81 (1996), 1297–1300 | DOI