Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 27-31

Voir la notice de l'article provenant de la source Math-Net.Ru

A new algorithm is proposed for estimation of convex body support function measurements in $L_{\infty}$ metric, which allows us to obtain the solution in quadratic time (with respect to the number of measurements) not using linear programming. The rate of convergence is proved to be stable for quite weak conditions on input data. This fact makes the algorithm robust for a wider class of problems than it was previously. The implemented algorithm is stable and predictable unlike other existing support function estimation algorithms. Implementation details and testing results are presented.
@article{VMUMM_2017_4_a3,
     author = {I. A. Palachev},
     title = {Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {27--31},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/}
}
TY  - JOUR
AU  - I. A. Palachev
TI  - Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 27
EP  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/
LA  - ru
ID  - VMUMM_2017_4_a3
ER  - 
%0 Journal Article
%A I. A. Palachev
%T Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 27-31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/
%G ru
%F VMUMM_2017_4_a3
I. A. Palachev. Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 27-31. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/