@article{VMUMM_2017_4_a3,
author = {I. A. Palachev},
title = {Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {27--31},
year = {2017},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/}
}
TY - JOUR
AU - I. A. Palachev
TI - Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2017
SP - 27
EP - 31
IS - 4
UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/
LA - ru
ID - VMUMM_2017_4_a3
ER -
%0 Journal Article
%A I. A. Palachev
%T Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 27-31
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/
%G ru
%F VMUMM_2017_4_a3
I. A. Palachev. Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 27-31. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/
[1] Prince J.L., Willsky A.S., “Reconstructing convex sets from support line measurements”, IEEE Trans. Pattern Anal. and Machine Intel., 12:4 (1990), 377–389 | DOI
[2] Lele A.S., Kulkarni S.R., Willsky A.S., “Convex-polygon estimation from support-line measurements and applications to target reconstruction from laser-radar data”, J. Opt. Soc. Amer. A, 9:10 (1992), 1693–1714 | DOI
[3] Gregor J., Rannou F.R., “Least-squares framework for projection MRI reconstruction”, Proc. SPIE, 4322, 2001, 888–898 | DOI
[4] Gregor J., Rannou F.R., “Three-dimensional support function estimation and application for projection magnetic resonance imaging”, Int. J. Imaging Systems and Technol., 12:1 (2002), 43–50 | DOI
[5] Palachev I.A., “Metod isklyucheniya izbytochnykh ogranichenii v zadache vosstanovleniya tela po izmereniyam ego opornoi funktsii”, Vychisl. metody i program., 16 (2015), 348–359
[6] Gardner R.J., Kiderlen M., “A new algorithm for 3D reconstruction from support functions”, IEEE Trans. Pattern Anal. and Machine Intel., 31:3 (2009), 556–562 | DOI | MR
[7] Wachter A., Biegler L.T., “On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming”, Math. Program., 106:1 (2006), 25–57 | DOI | MR | Zbl
[8] Wachter A., Biegler L.T., “Line search filter methods for nonlinear programming: Local convergence”, SIAM J. Optim., 16:1 (2005), 32–48 | DOI | MR | Zbl
[9] Wachter A., Biegler L.T., “Line search filter methods for nonlinear programming: Motivation and global convergence”, SIAM J. Optim., 16:1, 1–31 | DOI | MR | Zbl
[10] Devillers O., “The Delaunay hierarchy”, Int. J. Found. Comput. Sci., 13 (2002), 163–180 | DOI | MR | Zbl
[11] Attali D., Boissonnat J.-D., “A linear bound on the complexity of the Delaunay triangulation of points on polyhedral surfaces”, Discr. and Comp. Geom., 31:3 (2004), 369–384 | DOI | MR | Zbl