Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 27-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new algorithm is proposed for estimation of convex body support function measurements in $L_{\infty}$ metric, which allows us to obtain the solution in quadratic time (with respect to the number of measurements) not using linear programming. The rate of convergence is proved to be stable for quite weak conditions on input data. This fact makes the algorithm robust for a wider class of problems than it was previously. The implemented algorithm is stable and predictable unlike other existing support function estimation algorithms. Implementation details and testing results are presented.
@article{VMUMM_2017_4_a3,
     author = {I. A. Palachev},
     title = {Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {27--31},
     year = {2017},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/}
}
TY  - JOUR
AU  - I. A. Palachev
TI  - Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 27
EP  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/
LA  - ru
ID  - VMUMM_2017_4_a3
ER  - 
%0 Journal Article
%A I. A. Palachev
%T Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 27-31
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/
%G ru
%F VMUMM_2017_4_a3
I. A. Palachev. Consistency method for measurements of the support function of a convex body in the metric of $L_{\infty}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 27-31. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a3/

[1] Prince J.L., Willsky A.S., “Reconstructing convex sets from support line measurements”, IEEE Trans. Pattern Anal. and Machine Intel., 12:4 (1990), 377–389 | DOI

[2] Lele A.S., Kulkarni S.R., Willsky A.S., “Convex-polygon estimation from support-line measurements and applications to target reconstruction from laser-radar data”, J. Opt. Soc. Amer. A, 9:10 (1992), 1693–1714 | DOI

[3] Gregor J., Rannou F.R., “Least-squares framework for projection MRI reconstruction”, Proc. SPIE, 4322, 2001, 888–898 | DOI

[4] Gregor J., Rannou F.R., “Three-dimensional support function estimation and application for projection magnetic resonance imaging”, Int. J. Imaging Systems and Technol., 12:1 (2002), 43–50 | DOI

[5] Palachev I.A., “Metod isklyucheniya izbytochnykh ogranichenii v zadache vosstanovleniya tela po izmereniyam ego opornoi funktsii”, Vychisl. metody i program., 16 (2015), 348–359

[6] Gardner R.J., Kiderlen M., “A new algorithm for 3D reconstruction from support functions”, IEEE Trans. Pattern Anal. and Machine Intel., 31:3 (2009), 556–562 | DOI | MR

[7] Wachter A., Biegler L.T., “On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming”, Math. Program., 106:1 (2006), 25–57 | DOI | MR | Zbl

[8] Wachter A., Biegler L.T., “Line search filter methods for nonlinear programming: Local convergence”, SIAM J. Optim., 16:1 (2005), 32–48 | DOI | MR | Zbl

[9] Wachter A., Biegler L.T., “Line search filter methods for nonlinear programming: Motivation and global convergence”, SIAM J. Optim., 16:1, 1–31 | DOI | MR | Zbl

[10] Devillers O., “The Delaunay hierarchy”, Int. J. Found. Comput. Sci., 13 (2002), 163–180 | DOI | MR | Zbl

[11] Attali D., Boissonnat J.-D., “A linear bound on the complexity of the Delaunay triangulation of points on polyhedral surfaces”, Discr. and Comp. Geom., 31:3 (2004), 369–384 | DOI | MR | Zbl