Poincar\'e polynomial of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$ and the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 20-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a combinatorial proof that the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$ satisfies the requrrent formula for Poincare polynomials of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$.
@article{VMUMM_2017_4_a2,
     author = {N. Ya. Amburg and E. M. Kreines and G. B. Shabat},
     title = {Poincar\'e polynomial of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$ and the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {20--27},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a2/}
}
TY  - JOUR
AU  - N. Ya. Amburg
AU  - E. M. Kreines
AU  - G. B. Shabat
TI  - Poincar\'e polynomial of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$ and the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 20
EP  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a2/
LA  - ru
ID  - VMUMM_2017_4_a2
ER  - 
%0 Journal Article
%A N. Ya. Amburg
%A E. M. Kreines
%A G. B. Shabat
%T Poincar\'e polynomial of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$ and the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 20-27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a2/
%G ru
%F VMUMM_2017_4_a2
N. Ya. Amburg; E. M. Kreines; G. B. Shabat. Poincar\'e polynomial of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$ and the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 20-27. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a2/