Poincar\'e polynomial of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$ and the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 20-27
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a combinatorial proof that the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$ satisfies the requrrent formula for Poincare polynomials of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$.
@article{VMUMM_2017_4_a2,
author = {N. Ya. Amburg and E. M. Kreines and G. B. Shabat},
title = {Poincar\'e polynomial of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$ and the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {20--27},
publisher = {mathdoc},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a2/}
}
TY - JOUR
AU - N. Ya. Amburg
AU - E. M. Kreines
AU - G. B. Shabat
TI - Poincar\'e polynomial of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$ and the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2017
SP - 20
EP - 27
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a2/
LA - ru
ID - VMUMM_2017_4_a2
ER -
%0 Journal Article
%A N. Ya. Amburg
%A E. M. Kreines
%A G. B. Shabat
%T Poincar\'e polynomial of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$ and the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 20-27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a2/
%G ru
%F VMUMM_2017_4_a2
N. Ya. Amburg; E. M. Kreines; G. B. Shabat. Poincar\'e polynomial of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$ and the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 20-27. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a2/