Metric projection onto subsets of compact connected two-dimensional Riemannian manifolds
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 15-20
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is focused on combinatorial properties of the metric projection $P_{E}$ of a compact connected Riemannian two-dimensional manifold $M^{2}$ onto its subset $E$ consisting of $k$ closed connected sets $E_{j}$. The point $x \in M^{2}$ is called exceptional if $P_{E}(x)$ contains points from no less than three different $E_{j}$. The sharp estimate for the number of exceptional points is obtained in terms of $k$ and the type of the manifold $M^{2}$. Similar estimate is proved for finitely connected subsets $E$ of a normed plane.
@article{VMUMM_2017_4_a1,
author = {K. S. Shklyaev},
title = {Metric projection onto subsets of compact connected two-dimensional {Riemannian} manifolds},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {15--20},
year = {2017},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a1/}
}
TY - JOUR AU - K. S. Shklyaev TI - Metric projection onto subsets of compact connected two-dimensional Riemannian manifolds JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 15 EP - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a1/ LA - ru ID - VMUMM_2017_4_a1 ER -
K. S. Shklyaev. Metric projection onto subsets of compact connected two-dimensional Riemannian manifolds. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 15-20. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a1/
[1] Karlov M.I., “Chebyshevskie mnozhestva na mnogoobraziyakh”, Tr. IMM UrO RAN, 4, 1996, 157–161 | Zbl
[2] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971
[3] Mischenko A.S., Fomenko A.T., Kurs differentsialnoi geometrii i topologii, Faktorial Press, M., 2000 | MR
[4] Skopenkov A.B., Algebraicheskaya topologiya s geometricheskoi tochki zreniya, MTsNMO, M., 2015