Metric projection onto subsets of compact connected two-dimensional Riemannian manifolds
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 15-20

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is focused on combinatorial properties of the metric projection $P_{E}$ of a compact connected Riemannian two-dimensional manifold $M^{2}$ onto its subset $E$ consisting of $k$ closed connected sets $E_{j}$. The point $x \in M^{2}$ is called exceptional if $P_{E}(x)$ contains points from no less than three different $E_{j}$. The sharp estimate for the number of exceptional points is obtained in terms of $k$ and the type of the manifold $M^{2}$. Similar estimate is proved for finitely connected subsets $E$ of a normed plane.
@article{VMUMM_2017_4_a1,
     author = {K. S. Shklyaev},
     title = {Metric projection onto subsets of compact connected two-dimensional {Riemannian} manifolds},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--20},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a1/}
}
TY  - JOUR
AU  - K. S. Shklyaev
TI  - Metric projection onto subsets of compact connected two-dimensional Riemannian manifolds
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 15
EP  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a1/
LA  - ru
ID  - VMUMM_2017_4_a1
ER  - 
%0 Journal Article
%A K. S. Shklyaev
%T Metric projection onto subsets of compact connected two-dimensional Riemannian manifolds
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 15-20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a1/
%G ru
%F VMUMM_2017_4_a1
K. S. Shklyaev. Metric projection onto subsets of compact connected two-dimensional Riemannian manifolds. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 15-20. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a1/