Metric projection onto subsets of compact connected two-dimensional Riemannian manifolds
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 15-20
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper is focused on combinatorial properties of the metric projection $P_{E}$ of a compact connected Riemannian two-dimensional manifold $M^{2}$ onto its subset $E$ consisting of $k$ closed connected sets $E_{j}$. The point $x \in M^{2}$ is called exceptional if $P_{E}(x)$ contains points from no less than three different $E_{j}$. The sharp estimate for the number of exceptional points is obtained in terms of $k$ and the type of the manifold $M^{2}$. Similar estimate is proved for finitely connected subsets $E$ of a normed plane.
			
            
            
            
          
        
      @article{VMUMM_2017_4_a1,
     author = {K. S. Shklyaev},
     title = {Metric projection onto subsets of compact connected two-dimensional {Riemannian} manifolds},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--20},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a1/}
}
                      
                      
                    TY - JOUR AU - K. S. Shklyaev TI - Metric projection onto subsets of compact connected two-dimensional Riemannian manifolds JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 15 EP - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a1/ LA - ru ID - VMUMM_2017_4_a1 ER -
K. S. Shklyaev. Metric projection onto subsets of compact connected two-dimensional Riemannian manifolds. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 15-20. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a1/