@article{VMUMM_2017_4_a0,
author = {S. I. Mitrokhin},
title = {Spectral properties of the family of even order differential operators with a summable potential},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--15},
year = {2017},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a0/}
}
TY - JOUR AU - S. I. Mitrokhin TI - Spectral properties of the family of even order differential operators with a summable potential JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 3 EP - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a0/ LA - ru ID - VMUMM_2017_4_a0 ER -
S. I. Mitrokhin. Spectral properties of the family of even order differential operators with a summable potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 3-15. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a0/
[1] Vinokurov V.A., Sadovnichii V.A., “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Differents. uravneniya, 34:10 (1998), 1424–1426 | MR
[2] Vinokurov V.A., Sadovnichii V.A., “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Izv. RAN. Ser. matem., 64:4 (2000), 47–108 | DOI | MR | Zbl
[3] Birkhoff G.D., “On the asymptotic sharaster of the solutions of the certain linear differential equations containing parameter”, Traps. Amer. Math. Sos., 9 (1908), 219–231 | MR
[4] Tamarkin Ya.D., O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii, Tip. M. P. Frolovoi, Petrograd, 1917
[5] Vasileva A.B., Butuzov V.F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR
[6] Atkinson F.V., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR
[7] Levinson N., “The asymptotic nature of the solutions of lipear systems of differential equations”, Duke Math. J., 15 (1948), 111–126 | DOI | MR | Zbl
[8] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[9] Lundina D.Sh., “Tochnaya zavisimost mezhdu asimptoticheskimi razlozheniyami sobstvennykh znachenii kraevykh zadach Shturma–Liuvillya i gladkostyu potentsiala”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 1982, no. 37, 74–101 | MR | Zbl
[10] Marchenko V.A., Spektralnaya teoriya operatorov Shturma–Liuvillya, Naukova dumka, Kiev, 1972 | MR
[11] Martinovich M., “Dzeta-funktsiya i formuly sledov dlya odnoi kraevoi zadachi s funktsionalno-differentsialnym uravneniem”, Differents. uravneniya, 18:3 (1982), 537–540 | MR
[12] Pechentsov A.S., “Asimptoticheskie razlozheniya reshenii lineinykh differentsialnykh uravnenii, soderzhaschikh parametr”, Differents. uravneniya, 17:9 (1981), 1611–1619 | MR
[13] Ilin V.A., “O skhodimosti razlozhenii po sobstvennym funktsiyam v tochkakh razryva koeffitsientov differentsialnogo operatora”, Matem. zametki, 22:5 (1977), 698–723
[14] Mitrokhin S.I., “O formulakh regulyarizovannykh sledov dlya differentsialnykh operatorov vtorogo poryadka s razryvnymi koeffitsientami”, Vestn. Mosk. un-ta. Matem. Mekhan., 1986, no. 6, 3–6 | MR
[15] Mitrokhin S.I., “O formulakh sledov dlya odnoi kraevoi zadachi s funktsionalno-differentsialnym uravneniem s razryvnym koeffitsientom”, Differents. uravneniya, 22:6 (1986), 927–931 | MR | Zbl
[16] Budaev V.D., “O bezuslovnoi bazisnosti na zamknutom intervale sistem sobstvennykh i prisoedinennykh funktsii operatora vtorogo poryadka s razryvnymi koeffitsientami”, Differents. uravneniya, 23:6 (1987), 941–952 | MR
[17] Ilin V.A., “Neobkhodimye i dostatochnye usloviya bazisnosti Rissa kornevykh vektorov razryvnykh operatorov vtorogo poryadka”, Differents. uravneniya, 22:12 (1986), 2059–2071 | MR | Zbl
[18] Io I., Ilin V.A., “Ravnomernaya otsenka sobstvennykh funktsii i otsenka sverkhu chisla sobstvennykh znachenii operatora Shturma–Liuvillya s potentsialom iz klassa $L(0,1)$”, Differents. uravneniya, 15:7 (1979), 1164–1174 | MR | Zbl
[19] Mitrokhin S.I., “O nekotorykh spektralnykh svoistvakh differentsialnykh operatorov vtorogo poryadka s razryvnoi vesovoi funktsiei”, Dokl. RAN, 356:1 (1997), 13–15 | MR | Zbl
[20] Savchuk A.M., “Regulyarizovannyi sled pervogo poryadka operatora Shturma–Liuvillya s $\delta$-potentsialom”, Uspekhi matem. nauk, 55:6(336) (2000), 155–156 | DOI | MR | Zbl
[21] Savchuk A.M, Shkalikov A.A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | Zbl
[22] Mitrokhin S.I., “Asimptotika sobstvennykh znachenii differentsialnogo operatora chetvertogo poryadka s summiruemymi koeffitsientami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2009, no. 3, 14–17 | MR | Zbl
[23] Mitrokhin S.I., “O spektralnykh svoistvakh odnogo differentsialnogo operatora s summiruemymi koeffitsientami s zapazdyvayuschim argumentom”, Ufim. matem. zhurn., 3:4 (2011), 95–115 | MR | Zbl
[24] Mitrokhin S.I., “Spektralnye svoistva kraevykh zadach dlya funktsionalno-differentsialnykh uravnenii s integriruemymi koeffitsientami”, Differents. uravneniya, 46:8 (2010), 1085–1093 | MR | Zbl
[25] Mitrokhin S.I., “O spektralnykh svoistvakh differentsialnogo operatora s summiruemym potentsialom i gladkoi vesovoi funktsiei”, Vestn. SamGU. Estestv. ser., 2008, no. 8(1/67), 172–187
[26] Levitan B.M., Sargsyan I.S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970 | MR
[27] Bellman R., Kuk K.L., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR
[28] Lidskii V.B., Sadovnichii V.A., “Asimptoticheskie formuly dlya kornei odnogo klassa tselykh funktsii”, Matem. sb., 65:4 (1968), 558–566
[29] Mitrokhin S.I., “O “rasscheplenii” kratnykh v glavnom sobstvennykh znachenii mnogotochechnykh kraevykh zadach”, Izv. vuzov. Matem., 1997, no. 3(418), 38–43 | MR | Zbl
[30] Sadovnichii V.A., Lyubishkin V.A., “O nekotorykh novykh rezultatakh teorii regulyarizovannykh sledov differentsialnykh operatorov”, Differents. uravneniya, 18:1 (1982), 109–116 | MR
[31] Sadovnichii V.A., “O sledakh obyknovennykh differentsialnykh operatorov vysshikh poryadkov”, Matem. sb., 72:2 (1967), 293–310