Spectral properties of the family of even order differential operators with a summable potential
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 3-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for a higher order differential operator with separated boundary conditions is considered. The asymptotics of solutions of the corresponding differential equation for large values of the spectral parameter is studied. The indicator diagram of the equation for the eigenvalues is studied. In various sector of the indicator diagram the asymptotic behavior of the eigenvalues and the formula for finding the eigenfunctions of the studied operator is obtained.
@article{VMUMM_2017_4_a0,
     author = {S. I. Mitrokhin},
     title = {Spectral properties of the family of even order differential operators with a summable potential},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--15},
     year = {2017},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a0/}
}
TY  - JOUR
AU  - S. I. Mitrokhin
TI  - Spectral properties of the family of even order differential operators with a summable potential
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 3
EP  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a0/
LA  - ru
ID  - VMUMM_2017_4_a0
ER  - 
%0 Journal Article
%A S. I. Mitrokhin
%T Spectral properties of the family of even order differential operators with a summable potential
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 3-15
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a0/
%G ru
%F VMUMM_2017_4_a0
S. I. Mitrokhin. Spectral properties of the family of even order differential operators with a summable potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2017), pp. 3-15. http://geodesic.mathdoc.fr/item/VMUMM_2017_4_a0/

[1] Vinokurov V.A., Sadovnichii V.A., “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Differents. uravneniya, 34:10 (1998), 1424–1426 | MR

[2] Vinokurov V.A., Sadovnichii V.A., “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Izv. RAN. Ser. matem., 64:4 (2000), 47–108 | DOI | MR | Zbl

[3] Birkhoff G.D., “On the asymptotic sharaster of the solutions of the certain linear differential equations containing parameter”, Traps. Amer. Math. Sos., 9 (1908), 219–231 | MR

[4] Tamarkin Ya.D., O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii, Tip. M. P. Frolovoi, Petrograd, 1917

[5] Vasileva A.B., Butuzov V.F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[6] Atkinson F.V., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR

[7] Levinson N., “The asymptotic nature of the solutions of lipear systems of differential equations”, Duke Math. J., 15 (1948), 111–126 | DOI | MR | Zbl

[8] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[9] Lundina D.Sh., “Tochnaya zavisimost mezhdu asimptoticheskimi razlozheniyami sobstvennykh znachenii kraevykh zadach Shturma–Liuvillya i gladkostyu potentsiala”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 1982, no. 37, 74–101 | MR | Zbl

[10] Marchenko V.A., Spektralnaya teoriya operatorov Shturma–Liuvillya, Naukova dumka, Kiev, 1972 | MR

[11] Martinovich M., “Dzeta-funktsiya i formuly sledov dlya odnoi kraevoi zadachi s funktsionalno-differentsialnym uravneniem”, Differents. uravneniya, 18:3 (1982), 537–540 | MR

[12] Pechentsov A.S., “Asimptoticheskie razlozheniya reshenii lineinykh differentsialnykh uravnenii, soderzhaschikh parametr”, Differents. uravneniya, 17:9 (1981), 1611–1619 | MR

[13] Ilin V.A., “O skhodimosti razlozhenii po sobstvennym funktsiyam v tochkakh razryva koeffitsientov differentsialnogo operatora”, Matem. zametki, 22:5 (1977), 698–723

[14] Mitrokhin S.I., “O formulakh regulyarizovannykh sledov dlya differentsialnykh operatorov vtorogo poryadka s razryvnymi koeffitsientami”, Vestn. Mosk. un-ta. Matem. Mekhan., 1986, no. 6, 3–6 | MR

[15] Mitrokhin S.I., “O formulakh sledov dlya odnoi kraevoi zadachi s funktsionalno-differentsialnym uravneniem s razryvnym koeffitsientom”, Differents. uravneniya, 22:6 (1986), 927–931 | MR | Zbl

[16] Budaev V.D., “O bezuslovnoi bazisnosti na zamknutom intervale sistem sobstvennykh i prisoedinennykh funktsii operatora vtorogo poryadka s razryvnymi koeffitsientami”, Differents. uravneniya, 23:6 (1987), 941–952 | MR

[17] Ilin V.A., “Neobkhodimye i dostatochnye usloviya bazisnosti Rissa kornevykh vektorov razryvnykh operatorov vtorogo poryadka”, Differents. uravneniya, 22:12 (1986), 2059–2071 | MR | Zbl

[18] Io I., Ilin V.A., “Ravnomernaya otsenka sobstvennykh funktsii i otsenka sverkhu chisla sobstvennykh znachenii operatora Shturma–Liuvillya s potentsialom iz klassa $L(0,1)$”, Differents. uravneniya, 15:7 (1979), 1164–1174 | MR | Zbl

[19] Mitrokhin S.I., “O nekotorykh spektralnykh svoistvakh differentsialnykh operatorov vtorogo poryadka s razryvnoi vesovoi funktsiei”, Dokl. RAN, 356:1 (1997), 13–15 | MR | Zbl

[20] Savchuk A.M., “Regulyarizovannyi sled pervogo poryadka operatora Shturma–Liuvillya s $\delta$-potentsialom”, Uspekhi matem. nauk, 55:6(336) (2000), 155–156 | DOI | MR | Zbl

[21] Savchuk A.M, Shkalikov A.A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | Zbl

[22] Mitrokhin S.I., “Asimptotika sobstvennykh znachenii differentsialnogo operatora chetvertogo poryadka s summiruemymi koeffitsientami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2009, no. 3, 14–17 | MR | Zbl

[23] Mitrokhin S.I., “O spektralnykh svoistvakh odnogo differentsialnogo operatora s summiruemymi koeffitsientami s zapazdyvayuschim argumentom”, Ufim. matem. zhurn., 3:4 (2011), 95–115 | MR | Zbl

[24] Mitrokhin S.I., “Spektralnye svoistva kraevykh zadach dlya funktsionalno-differentsialnykh uravnenii s integriruemymi koeffitsientami”, Differents. uravneniya, 46:8 (2010), 1085–1093 | MR | Zbl

[25] Mitrokhin S.I., “O spektralnykh svoistvakh differentsialnogo operatora s summiruemym potentsialom i gladkoi vesovoi funktsiei”, Vestn. SamGU. Estestv. ser., 2008, no. 8(1/67), 172–187

[26] Levitan B.M., Sargsyan I.S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970 | MR

[27] Bellman R., Kuk K.L., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR

[28] Lidskii V.B., Sadovnichii V.A., “Asimptoticheskie formuly dlya kornei odnogo klassa tselykh funktsii”, Matem. sb., 65:4 (1968), 558–566

[29] Mitrokhin S.I., “O “rasscheplenii” kratnykh v glavnom sobstvennykh znachenii mnogotochechnykh kraevykh zadach”, Izv. vuzov. Matem., 1997, no. 3(418), 38–43 | MR | Zbl

[30] Sadovnichii V.A., Lyubishkin V.A., “O nekotorykh novykh rezultatakh teorii regulyarizovannykh sledov differentsialnykh operatorov”, Differents. uravneniya, 18:1 (1982), 109–116 | MR

[31] Sadovnichii V.A., “O sledakh obyknovennykh differentsialnykh operatorov vysshikh poryadkov”, Matem. sb., 72:2 (1967), 293–310