Eigenvalue problem for some tensors used in mechanics and a number of essential compatibility conditions for the Saint-Venant deformation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 54-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several questions related to the problem on the eigenvalues of the tensor $\begin{smallmatrix} \displaystyle{}\\ \overset{\vphantom{p}}{\stackrel{\displaystyle\mathbf A}{\stackrel{\sim}{\sim}}}\\ \end{smallmatrix}\in\mathbb R_4(\Omega)$ with special symmetries are considered. Here $\Omega$ is a certain region of, in general, four-dimensional (three-dimensional) Riemann space. It is proved that in this case a non-degenerate tensor of the fourth rank in the case of a four-dimensional (three-dimensional) Riemann space has no more than six (three) essential components. It is shown that the number of essential conditions of deformation Saint-Venant compatibility less than six.
@article{VMUMM_2017_3_a7,
     author = {M. U. Nikabadze},
     title = {Eigenvalue problem for some tensors used in mechanics and a number of essential compatibility conditions for the {Saint-Venant} deformation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--58},
     year = {2017},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a7/}
}
TY  - JOUR
AU  - M. U. Nikabadze
TI  - Eigenvalue problem for some tensors used in mechanics and a number of essential compatibility conditions for the Saint-Venant deformation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 54
EP  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a7/
LA  - ru
ID  - VMUMM_2017_3_a7
ER  - 
%0 Journal Article
%A M. U. Nikabadze
%T Eigenvalue problem for some tensors used in mechanics and a number of essential compatibility conditions for the Saint-Venant deformation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 54-58
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a7/
%G ru
%F VMUMM_2017_3_a7
M. U. Nikabadze. Eigenvalue problem for some tensors used in mechanics and a number of essential compatibility conditions for the Saint-Venant deformation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 54-58. http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a7/

[1] Vekua I.N., Osnovy tenzornogo analiza i teorii kovariantov, Nauka, M., 1978 | MR

[2] Nikabadze M.U., “K postroeniyu sobstvennykh tenzornykh stolbtsov v mikropolyarnoi lineinoi teorii uprugosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 1, 30–39 | MR | Zbl

[3] Nikabadze M.U., “O nekotorykh voprosakh tenzornogo ischisleniya s prilozheniyami k mekhanike”, Tenzornyi analiz, SMFN, 55, RUDN, M., 2015

[4] Lure A.I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR

[5] Pobedrya B.E., Lektsii po tenzornomu analizu, Izd-vo MGU, M., 1986

[6] Rykhlevskii Ya., “CEIIINOSSSTTUV”. Matematicheskaya struktura uprugikh tel, Preprint No217 In-ta problem mekhaniki AN SSSR, M., 1983

[7] Ostrosablin N.I., Anizotropiya i obschie resheniya uravnenii lineinoi teorii uprugosti, Dokt. dis., In-t gidromekhaniki im. M.A. Lavrenteva SO RAN, Novosibirsk, 2000

[8] Annin B.D., Ostrosablin N.I., “Anizotropiya uprugikh svoistv materialov”, Prikl. mekhan. i tekhn. fiz., 49:6 (2008), 131–151 | MR

[9] Pobedrya B.E., Chislennye metody v teorii uprugosti i plastichnosti, Ucheb. posobie, 2-e izd., Izd-vo MGU, M., 1995 | MR

[10] Pobedrya B.E., Sheshenin S.V., Kholmatov T., Zadacha v napryazheniyakh, Fan, Tashkent, 1988

[11] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[12] Nikabadze M.U., “K usloviyam sovmestnosti v lineinoi mikropolyarnoi teorii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2010, no. 5, 48–51 | MR

[13] Nikabadze M.U., “K usloviyam sovmestnosti i uravneniyam dvizheniya v mikropolyarnoi lineinoi teorii uprugosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 1, 63–66 | MR | Zbl