Formation fronts of a nonlinear elastic medium from a medium without shear stresses
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 48-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fronts in which a medium without tangential stresses is converted in an incompressible nonlinear anisotropic elastic medium are considered. The mass flow through unit area is considered as known and variations of velocity tangential components and stresses are investigated. The boundary conditions at the fronts which correspond to the correction conditions are obtained as the existence conditions of the front structure. The model of a visco-elastic Kelvin–Voight medium is adopted for this structure.
@article{VMUMM_2017_3_a6,
     author = {A. G. Kulikovskii and E. I. Sveshnikova},
     title = {Formation fronts of a nonlinear elastic medium from a medium without shear stresses},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--54},
     year = {2017},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a6/}
}
TY  - JOUR
AU  - A. G. Kulikovskii
AU  - E. I. Sveshnikova
TI  - Formation fronts of a nonlinear elastic medium from a medium without shear stresses
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 48
EP  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a6/
LA  - ru
ID  - VMUMM_2017_3_a6
ER  - 
%0 Journal Article
%A A. G. Kulikovskii
%A E. I. Sveshnikova
%T Formation fronts of a nonlinear elastic medium from a medium without shear stresses
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 48-54
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a6/
%G ru
%F VMUMM_2017_3_a6
A. G. Kulikovskii; E. I. Sveshnikova. Formation fronts of a nonlinear elastic medium from a medium without shear stresses. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 48-54. http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a6/

[1] Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Nauka, M., 1986.

[2] Kulikovskii A.G., “O poverkhnostyakh razryva, razdelyayuschikh idealnye sredy s razlichnymi svoistvami. Volny rekombinatsii v magnitnoi gidrodinamike”, Prikl. matem. i mekhan., 32:6 (1968), 1125–1131

[3] Kulikovskii A.G., Sveshnikova E.I., Nelineinye volny v uprugikh sredakh, Mosk. litsei, M., 1998

[4] Kulikovskii A.G., Pogorelov N.V., Semenov A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[5] Zeldovich Ya.B., Barenblatt G. I., Librovich V. B., Makhviladze G. M., Matematicheskaya teoriya goreniya i vzryva, Nauka, M., 1980

[6] Barmin A.A., Kulikovskii A.G., “Fronty ionizatsii i rekombinatsii v elektromagnitnom pole”, Itogi nauki. Gidromekhanika, VINITI, M., 1971, 5–31

[7] Kulikovskii A.G., Chugainova A.P., “Klassicheskie i neklassicheskie razryvy v resheniyakh uravnenii nelineinoi teorii uprugosti”, Uspekhi matem. nauk, 63:2(380) (2008), 85–152

[8] Kulikovskii A.G., Chugainova A.P., “Issledovanie razryvov v resheniyakh uravnenii uprugoplasticheskoi sredy Prandtlya–Reissa”, Zhurn. vychisl. matem. i matem. fiz., 2016, no. 4, 1363–1370

[9] Kulikovskii A.G., Chugainova A.P., “Avtomodelnaya zadacha o volnakh v uprugoplasticheskoi srede Prandtlya–Reissa”, Tr. Matem. in-ta RAN, 295, 2016, 195–205

[10] Kulikovskii A.G., “O mnogoparametricheskikh frontakh silnykh razryvov v mekhanike sploshnykh sred”, Prikl. matem i mekhan., 75:4 (2011), 531–550

[11] Kulikovskii A.G., Sveshnikova E.I., “Obrazovanie anizotropnoi uprugoi sredy na fronte uplotneniya potoka chastits”, Prikl. matem. i mekhan., 79:6 (2015), 739–755

[12] Stepanov V.V., Kurs differentsialnykh uravnenii, Gos. izd-vo tekhniko-teor. lit., M., 1953