Properties of relaxation curves for the case of initial stage of deformation with constant velocity in the linear heredity theory
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 44-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Basic qualitative properties of the theoretic relaxation curves at ramp strain histories generated by the linear integral constitutive equation with an arbitrary relaxation function are analytically studied. Stress and stress rates jumps, monotonicity and convexity intervals of ramp relaxation curves, their asymptotic behavior at infinity, mutual two-sided bounds for relaxation curves and modulus, dependence on initial stage parameters and relaxation modulus properties and condition of convergence to the relaxation curve at instantaneous loading with the rise-time tending to zero are analyzed.
@article{VMUMM_2017_3_a5,
     author = {A. V. Khokhlov},
     title = {Properties of relaxation curves for the case of initial stage of deformation with constant velocity in the linear heredity theory},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {44--47},
     year = {2017},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a5/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - Properties of relaxation curves for the case of initial stage of deformation with constant velocity in the linear heredity theory
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 44
EP  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a5/
LA  - ru
ID  - VMUMM_2017_3_a5
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T Properties of relaxation curves for the case of initial stage of deformation with constant velocity in the linear heredity theory
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 44-47
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a5/
%G ru
%F VMUMM_2017_3_a5
A. V. Khokhlov. Properties of relaxation curves for the case of initial stage of deformation with constant velocity in the linear heredity theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 44-47. http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a5/

[1] Adamov A.A., Matveenko V.P., Trufanov N.A., Shardakov I.N., Metody prikladnoi vyazkouprugosti, Izd-vo UrO RAN, Ekaterinburg, 2003

[2] Bergstrom J.S., Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier; William Andrew, N.Y., 2015

[3] Lee S., Knauss W.G., “A note on the determination of relaxation and creep data from ramp tests”, Mech. Time-Dependent Mater., 4:1 (2000), 1–7 | DOI | MR

[4] Flory A., McKenna G.B., “Finite step rate corrections in stress relaxation experiments: a comparison of two methods”, Mech. Time-Dependent Mater., 8:1 (2004), 17–37 | DOI

[5] Sorvari J., Malinen M., “Determination of the relaxation modulus of a linearly viscoelastic material”, Mech. Time-Dependent Mater., 10:2 (2006), 125–133 | DOI

[6] Knauss W.G., Zhao J., “Improved relaxation time coverage in ramp-strain histories”, Mech. Time-Dependent Mater., 11:3 (2007), 199–216 | DOI

[7] Khokhlov A.V., “Kriterii razrusheniya pri polzuchesti, uchityvayuschie istoriyu deformirovaniya, i modelirovanie dlitelnoi prochnosti”, Izv. RAN. Mekhan. tverdogo tela, 2009, no. 4, 121–135

[8] Duenwald S.E., Vanderby R., Lakes R.S., “Constitutive equations for ligament and other soft tissue: evaluation by experiment”, Acta Mech., 205 (2009), 23–33 | DOI | Zbl

[9] Lakes R.S., Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009

[10] Tscharnuter D., Jerabek M., Major Z., et al., “On the determination of the relaxation modulus of PP compounds from arbitrary strain histories”, Mech. Time-Dependent Mater., 15:1 (2011), 1–14 | DOI

[11] Guedes R.M., Morais J.L., “A simple and effective scheme for data reduction of stress relaxation incorporating physical-aging effects: An analytical and numerical analysis”, Polymer Testing, 32:5 (2013), 961–971 | DOI | MR

[12] Di Paola M., Fiore V., Pinnola F., Valenza A., “On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials”, Mech. Mater., 69:1 (2014), 63–70 | DOI

[13] Fernandes V.A., De Focatiis D.S., “The role of deformation history on stress relaxation and stress memory of filled rubber”, Polymer Testing, 40 (2014), 124–132 | DOI

[14] Mathiesen D., Vogtmann D., Dupaix R., “Characterization and constitutive modeling of stress-relaxation behavior of polymethyl methacrylate (PMMA) across the glass transition temperature”, Mech. Mater., 71 (2014), 74–84 | DOI

[15] Sweeneya J., Bonnerb M., Ward I., “Modelling of loading, stress relaxation and stress recovery in a shape memory polymer”, J. Mech. Behav. Biomed. Mater., 37 (2014), 12–23 | DOI

[16] Babaei B., Davarian A., Pryse K.M., et al., “Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra”, J. Mech. Behav. Biomed. Mater., 55 (2015), 32–41 | DOI

[17] Khokhlov A.V., “Kharakternye osobennosti semeistv krivykh deformirovaniya lineinykh modelei vyazkouprugosti”, Problemy prochnosti i plastichnosti, 77:2 (2015), 139–154

[18] Khokhlov A.V., “Asimptoticheskaya kommutativnost krivykh polzuchesti pri stupenchatom nagruzhenii v lineinoi teorii nasledstvennosti”, Mashinostroenie i inzhenernoe obrazovanie, 2016, no. 1, 70–82

[19] Khokhlov A.V., “Kachestvennyi analiz obschikh svoistv teoreticheskikh krivykh lineinogo opredelyayuschego sootnosheniya vyazkouprugosti”, Nauka i obrazovanie, 2016, no. 5, 187–245 (data obrascheniya 14.06.2016) http://technomag.edu.ru/doc/840650.html

[20] Khokhlov A.V., “Svoistva semeistv krivykh polzuchesti dlya nagruzheniya s postoyannoi skorostyu na nachalnoi stadii, porozhdaemykh lineinym sootnosheniem vyazkouprugosti”, Problemy prochnosti i plastichnosti, 78:2 (2016), 164–176

[21] Khokhlov A.V., “Krivye polzuchesti i relaksatsii nelineinogo opredelyayuschego sootnosheniya Yu.N. Rabotnova dlya vyazkouprugoplastichnykh materialov”, Problemy prochnosti i plastichnosti, 78:4 (2016), 452–466