@article{VMUMM_2017_3_a5,
author = {A. V. Khokhlov},
title = {Properties of relaxation curves for the case of initial stage of deformation with constant velocity in the linear heredity theory},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {44--47},
year = {2017},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a5/}
}
TY - JOUR AU - A. V. Khokhlov TI - Properties of relaxation curves for the case of initial stage of deformation with constant velocity in the linear heredity theory JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 44 EP - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a5/ LA - ru ID - VMUMM_2017_3_a5 ER -
%0 Journal Article %A A. V. Khokhlov %T Properties of relaxation curves for the case of initial stage of deformation with constant velocity in the linear heredity theory %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2017 %P 44-47 %N 3 %U http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a5/ %G ru %F VMUMM_2017_3_a5
A. V. Khokhlov. Properties of relaxation curves for the case of initial stage of deformation with constant velocity in the linear heredity theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 44-47. http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a5/
[1] Adamov A.A., Matveenko V.P., Trufanov N.A., Shardakov I.N., Metody prikladnoi vyazkouprugosti, Izd-vo UrO RAN, Ekaterinburg, 2003
[2] Bergstrom J.S., Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier; William Andrew, N.Y., 2015
[3] Lee S., Knauss W.G., “A note on the determination of relaxation and creep data from ramp tests”, Mech. Time-Dependent Mater., 4:1 (2000), 1–7 | DOI | MR
[4] Flory A., McKenna G.B., “Finite step rate corrections in stress relaxation experiments: a comparison of two methods”, Mech. Time-Dependent Mater., 8:1 (2004), 17–37 | DOI
[5] Sorvari J., Malinen M., “Determination of the relaxation modulus of a linearly viscoelastic material”, Mech. Time-Dependent Mater., 10:2 (2006), 125–133 | DOI
[6] Knauss W.G., Zhao J., “Improved relaxation time coverage in ramp-strain histories”, Mech. Time-Dependent Mater., 11:3 (2007), 199–216 | DOI
[7] Khokhlov A.V., “Kriterii razrusheniya pri polzuchesti, uchityvayuschie istoriyu deformirovaniya, i modelirovanie dlitelnoi prochnosti”, Izv. RAN. Mekhan. tverdogo tela, 2009, no. 4, 121–135
[8] Duenwald S.E., Vanderby R., Lakes R.S., “Constitutive equations for ligament and other soft tissue: evaluation by experiment”, Acta Mech., 205 (2009), 23–33 | DOI | Zbl
[9] Lakes R.S., Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009
[10] Tscharnuter D., Jerabek M., Major Z., et al., “On the determination of the relaxation modulus of PP compounds from arbitrary strain histories”, Mech. Time-Dependent Mater., 15:1 (2011), 1–14 | DOI
[11] Guedes R.M., Morais J.L., “A simple and effective scheme for data reduction of stress relaxation incorporating physical-aging effects: An analytical and numerical analysis”, Polymer Testing, 32:5 (2013), 961–971 | DOI | MR
[12] Di Paola M., Fiore V., Pinnola F., Valenza A., “On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials”, Mech. Mater., 69:1 (2014), 63–70 | DOI
[13] Fernandes V.A., De Focatiis D.S., “The role of deformation history on stress relaxation and stress memory of filled rubber”, Polymer Testing, 40 (2014), 124–132 | DOI
[14] Mathiesen D., Vogtmann D., Dupaix R., “Characterization and constitutive modeling of stress-relaxation behavior of polymethyl methacrylate (PMMA) across the glass transition temperature”, Mech. Mater., 71 (2014), 74–84 | DOI
[15] Sweeneya J., Bonnerb M., Ward I., “Modelling of loading, stress relaxation and stress recovery in a shape memory polymer”, J. Mech. Behav. Biomed. Mater., 37 (2014), 12–23 | DOI
[16] Babaei B., Davarian A., Pryse K.M., et al., “Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra”, J. Mech. Behav. Biomed. Mater., 55 (2015), 32–41 | DOI
[17] Khokhlov A.V., “Kharakternye osobennosti semeistv krivykh deformirovaniya lineinykh modelei vyazkouprugosti”, Problemy prochnosti i plastichnosti, 77:2 (2015), 139–154
[18] Khokhlov A.V., “Asimptoticheskaya kommutativnost krivykh polzuchesti pri stupenchatom nagruzhenii v lineinoi teorii nasledstvennosti”, Mashinostroenie i inzhenernoe obrazovanie, 2016, no. 1, 70–82
[19] Khokhlov A.V., “Kachestvennyi analiz obschikh svoistv teoreticheskikh krivykh lineinogo opredelyayuschego sootnosheniya vyazkouprugosti”, Nauka i obrazovanie, 2016, no. 5, 187–245 (data obrascheniya 14.06.2016) http://technomag.edu.ru/doc/840650.html
[20] Khokhlov A.V., “Svoistva semeistv krivykh polzuchesti dlya nagruzheniya s postoyannoi skorostyu na nachalnoi stadii, porozhdaemykh lineinym sootnosheniem vyazkouprugosti”, Problemy prochnosti i plastichnosti, 78:2 (2016), 164–176
[21] Khokhlov A.V., “Krivye polzuchesti i relaksatsii nelineinogo opredelyayuschego sootnosheniya Yu.N. Rabotnova dlya vyazkouprugoplastichnykh materialov”, Problemy prochnosti i plastichnosti, 78:4 (2016), 452–466